, Volume 6, Issue 3, pp 358–372 | Cite as

The Link Between Rapid Enigmatic Amphibian Decline and the Globally Emerging Chytrid Fungus

  • Stefan LöttersEmail author
  • Jos Kielgast
  • Jon Bielby
  • Sebastian Schmidtlein
  • Jaime Bosch
  • Michael Veith
  • Susan F. Walker
  • Matthew C. Fisher
  • Dennis Rödder
Short Communication


Amphibians are globally declining and approximately one-third of all species are threatened with extinction. Some of the most severe declines have occurred suddenly and for unknown reasons in apparently pristine habitats. It has been hypothesized that these “rapid enigmatic declines” are the result of a panzootic of the disease chytridiomycosis caused by globally emerging amphibian chytrid fungus. In a Species Distribution Model, we identified the potential distribution of this pathogen. Areas and species from which rapid enigmatic decline are known significantly overlap with those of highest environmental suitability to the chytrid fungus. We confirm the plausibility of a link between rapid enigmatic decline in worldwide amphibian species and epizootic chytridiomycosis.


Batrachochytrium dendrobatidis bioclimate chytridiomycosis IUCN Red List MaxEnt species distribution model 



The authors thank Ariadne Angulo and Mike Hoffmann of Conservation International for being helpful in making available requested IUCN data.


  1. Alford RA, Bradfield KS, Richards SJ (2007) Ecology: global warming and amphibian losses. Nature 447:E3-E4CrossRefGoogle Scholar
  2. Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361-367CrossRefGoogle Scholar
  3. Andre SE, Parker J, Briggs CJ (2008) Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). Journal of Wildlife Diseases 44:716-720Google Scholar
  4. Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting susceptibility to future declines in the world’s frogs. Conservation Letters 1:82-90CrossRefGoogle Scholar
  5. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227CrossRefGoogle Scholar
  6. Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conservation 97:331–337CrossRefGoogle Scholar
  7. Bosch J, Carrascal LM, Duran L, Walker S, Fisher MC (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain: is there a link? Proceedings of the Royal Society B-Biological Sciences 274:253-260CrossRefGoogle Scholar
  8. Cleaveland S, Hess GR, Dobson AP, Laurenson MK, McCallum HI, Roberst MG, Woodroffe R (2002) The role of pathogens in biological conservation. In: The Ecology of Wildlife Diseases, Hudson PJ, Grenfell BT, Heesterbeek H, Dobson AP (editors), Oxford, UK: Oxford University Press, pp 139-150Google Scholar
  9. Cunningham AA, Daszak P, Rodriguez JP (2003) Pathogen polution: defining a parasitological threat to biodiversity conservation. Journal of Parasitology 89(Suppl):S78-S83Google Scholar
  10. Daszak P, Tabor GM, Kilpatrick AM, Epstein J, Plowright R (2004) Conservation medicine and a new agenda for emerging diseases. Annals of the New York Academy of Sciences 1026:1-11CrossRefGoogle Scholar
  11. Dormann CF, McPherson J, Araújo MB, Bivand R, Bollinger J, Carl G, et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609-628CrossRefGoogle Scholar
  12. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151CrossRefGoogle Scholar
  13. Fisher M.C, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time and host. Annual Review of Microbiology 63:291-310CrossRefGoogle Scholar
  14. Gascon C, Collins JP, Moore RD Church DR, McKay JE, Mendelson III JR (2007) Amphibian Conservation Action Plan. Gland, Switzerland, Cambridge, UK: IUCN, Conservation InternationalGoogle Scholar
  15. Gaston KJ, Fuller RA (2008) The sizes of species’ geographic ranges. Journal of Applied Ecology 46:1–9Google Scholar
  16. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modeling 135:147-186CrossRefGoogle Scholar
  17. Hijmans RJ, Cruz JM, Rojas E, Guarino L (2001) DIVA-GIS, Version 1.4. Data. Manual. Lima, Peru: International Potato Center and International Plant Genetic Resources InstituteGoogle Scholar
  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978CrossRefGoogle Scholar
  19. Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy if Sciences 1134:1-24CrossRefGoogle Scholar
  20. Kielgast J, Rödder D, Veith M, Lötters S (2010) Widespread occurrence of the amphibian chytrid fungus in Kenya. Animal Conservation 13:1–8Google Scholar
  21. Kriger KM, Hero JM (2007) Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. Journal of Zoology 271:352-359Google Scholar
  22. Kriger KM, Pereoglou F, Hero J-M (2007) Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conservation Biology 21:1280-1290CrossRefGoogle Scholar
  23. Lafferty KD, Gerber LR (2002) Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conservation Biology 16:593-604CrossRefGoogle Scholar
  24. Laurance WF (2008) Global warming and amphibian extinctions in eastern Australia. Australian Ecology 33:1-9CrossRefGoogle Scholar
  25. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Science of the USA 102:3165-3170CrossRefGoogle Scholar
  26. Lips KR, Diffendorfer J, Mendelson III JR, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6:441-454CrossRefGoogle Scholar
  27. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393CrossRefGoogle Scholar
  28. Lötters S, Haas W, Schick S, Böhme W (2002) On the systematics of the harlequin frogs (Amphibia: Bufonidae: Atelopus) from Amazonia. II: Redescription of Atelopus pulcher (Boulenger, 1882) from the eastern Andean versant in Peru. Salamandra 38:165-184Google Scholar
  29. Lötters S, Rödder D, Bielby J, Bosch J, Garner TWJ, Kielgast J, et al. (2008) Meeting the challenge of conserving Madagascar’s megadiverse amphibians: addition of a risk-assessment for the chytrid fungus. PLoS Biology 6Google Scholar
  30. Lötters S, Schulte R, Córdova JH, Veith M (2005) Conservation priorities for harlequin frogs (Atelopus spp.) of Peru. Oryx 39:343-346CrossRefGoogle Scholar
  31. Luger M, Garner TJW, Ernst R, Hödl W, Lötters S (2008) No evidence for precipitous declines in harlequin frogs (Atelopus) in the Guyanas. Studies on Neotropical Fauna & Environemnt 43:177-180CrossRefGoogle Scholar
  32. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921-931CrossRefGoogle Scholar
  33. McCallum H (2008) Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology & Evolution 23:631-637CrossRefGoogle Scholar
  34. McCallum H, Dobson A (1995) Detecting disease and parasite threats to eandangered species and ecosystems. Trends in Ecology & Evolution 10:190-194CrossRefGoogle Scholar
  35. Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272-278CrossRefGoogle Scholar
  36. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161-175CrossRefGoogle Scholar
  37. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modeling 190:231-259CrossRefGoogle Scholar
  38. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9-15CrossRefGoogle Scholar
  39. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161-167CrossRefGoogle Scholar
  40. Puschendorf R, Carnaval AC, VanDerWal J, Zumbado-Ulate H, Chaves G, Bolaños F, et al. (2009) Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Diversity and Distributions 15:401-408CrossRefGoogle Scholar
  41. Rachowicz LJ, Knapp RA, Morgan JAT, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671-1683CrossRefGoogle Scholar
  42. Rahbek C (2007) Disease ecology: The silence of the robins. Nature 447:652-653CrossRefGoogle Scholar
  43. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, et al. (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52-66CrossRefGoogle Scholar
  44. Rödder D, Veith M, Lötters S (2008) Environmental gradients explaining prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective Animal Conservation 11:513-517CrossRefGoogle Scholar
  45. Ron SR (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Biotropica 37:209-221CrossRefGoogle Scholar
  46. Rueda-Almonacid JV, Rodríguez-Mahecha JV, La Marca E, Lötters S, Kahn T, Angulo A (2005) Ranas arlequines. Serie Libretas de Campo 5. Bogotá DE, Colombia: Conservación Internacional ColombiaGoogle Scholar
  47. Schloegel LM, Hero JM, Berger L, Speare R, McDonald K, Daszak P (2006) The decline of the sharp-snouted day frog (Taudactylus acutirostris): The first documented case of extinction by infection in a free-ranging wildlife species? EcoHealth 3:35-40CrossRefGoogle Scholar
  48. Scott ME (1988) The impact of infection and disease on animal Populations: Implications for Conservation Biology. Conservation Biology 2:40-56CrossRefGoogle Scholar
  49. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125-134CrossRefGoogle Scholar
  50. Smith KF, Acevedo-Whitehouse K, Pedersen AB (2009) The role of infectious diseases in biological conservation. Animal Conservation 12:1-12CrossRefGoogle Scholar
  51. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-1786CrossRefGoogle Scholar
  52. Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, et al. (2008) Threatened Amphibians of the World. Barcelona, Spain: Lynx Ed.Google Scholar
  53. Team RDC (2009) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical ComputingGoogle Scholar
  54. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences USA 105:11466-11473CrossRefGoogle Scholar
  55. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868-2883CrossRefGoogle Scholar
  56. Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19:1449-1459CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2010

Authors and Affiliations

  • Stefan Lötters
    • 1
    Email author
  • Jos Kielgast
    • 2
  • Jon Bielby
    • 3
  • Sebastian Schmidtlein
    • 4
  • Jaime Bosch
    • 5
  • Michael Veith
    • 1
  • Susan F. Walker
    • 6
  • Matthew C. Fisher
    • 6
  • Dennis Rödder
    • 1
  1. 1.Department of BiogeographyTrier UniversityTrierGermany
  2. 2.Department of Biology, Section for Microbiology and EvolutionCopenhagen UniversityCopenhagenDenmark
  3. 3.Department of BiologyImperial College LondonLondonUK
  4. 4.Department of GeographyBonn UniversityBonnGermany
  5. 5.Museo Nacional de Ciencias NaturalesMadridSpain
  6. 6.Department of Infectious Disease EpidemiologyImperial College London, St. Mary’s HospitalLondonUK

Personalised recommendations