, 6:135 | Cite as

Risk of Malaria Reemergence in Southern France: Testing Scenarios with a Multiagent Simulation Model

  • Catherine Linard
  • Nicolas Ponçon
  • Didier Fontenille
  • Eric F. Lambin
Original Contribution


The Camargue, a region in southern France, is considered a potential site for malaria reemergence. All the suitable factors of the disease transmission system are present—competent mosquito vectors, habitats for their breeding, and susceptible people—except for the parasite. The objective of this study was to test potential drivers of malaria reemergence in this system after possible changes in biological attributes of vectors, agricultural practices, land use, tourism activities, and climate. Scenarios of plausible futures were formulated and then simulated using a spatially explicit and dynamic multiagent simulation: the MALCAM model. Scenarios were developed by varying the value of model inputs. Model outputs were compared based on the contact rate between people and potential malaria vectors, and the number of new infections in case of reintroduction of the parasite in the region. Model simulations showed that the risk of malaria reemergence is low in the Camargue. If the disease would reemerge, it would be the result of a combination of unfavorable conditions: introduction of a large population of infectious people or mosquitoes, combined with high levels of people–vector contacts resulting from significant changes in land use, tourism activities, agricultural policies, biological evolution of mosquitoes, and climate changes. The representation in the MALCAM model of interactions and feedbacks between different agents, and between agents and their environment, led in some cases to counterintuitive results. Results from scenario analyses can help local public health authorities in policy formulation.


malaria scenario Camargue multiagent simulation disease emergence land use 


  1. Alten B, Kampen H, Fontenille D (2007) Malaria in Southern Europe: resurgence from the past? In: Emerging Pests and Vector-borne Diseases in Europe, Takken W, Knols BGJ (editors), Wageningen: Wageningen Academic Publishers, pp 35-58Google Scholar
  2. Carpenter SR, Pingali PL, Bennett EM, Zurek MB (2005) Ecosystems and Human Well-being: Scenarios, Volume 2, Washington, D.C.: Island PressGoogle Scholar
  3. Coosemans M, Guillet P (1999) Individual protection against mosquito bites [in French]. Médecine et Maladies Infectieuses 29(Suppl 3):390-396CrossRefGoogle Scholar
  4. Dervieux A (2005) La difficile gestion globale de l’eau en Camargue (France): le Contrat de delta. La revue électronique en sciences de l’environnement. Vertigo 6(3):11Google Scholar
  5. Doudier B, Bogreau H, DeVries A, Ponçon N, Stauffer WM, Fontenille D (2007) Possible autochthonous malaria from Marseille to Minneapolis. Emerging Infectious Diseases 13:1236-1238Google Scholar
  6. Kettle DS (1995) Medical and Veterinary Entomology, Wallingford, UK: CAB InternationalGoogle Scholar
  7. Kuhn KG, Campbell-Lendrum DH, Armstrong B, Davies CR (2003) Malaria in Britain: past, present, and future. Proceedings of the National Academy of Sciences 100(17):9997–10001Google Scholar
  8. Langewiesche K (2005) Evaluation des risques d’émergence, d’installation et de diffusion du paludisme en France dans un contexte de changement global (environnement et climat) projet EDEN, volet sciences sociales. Montpellier: FranceGoogle Scholar
  9. Linard C, Ponçon N, Fontenille D, Lambin EF (2008) A multi-agent simulation to assess the risk of malaria reemergence in southern France. Ecological Modelling 220:160–174. doi:10.1016/j.ecolmodel.2008.09.001 CrossRefGoogle Scholar
  10. Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, McMichael AJ (1999) Climate change and future populations at risk of malaria. Global Environmental Change 9(Suppl 1):S89-S107CrossRefGoogle Scholar
  11. Mcdonald G (1957) The Epidemiology and Control of Malaria, London: Oxford University PressGoogle Scholar
  12. Nakicenovic N, Alcamo J, Davis G, deVries Hea (2000) Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), Cambridge: Cambridge University PressGoogle Scholar
  13. Ogden NH, Bigras-Poulin M, Hanincová K, Maarouf A, O’Callaghan CJ, Kurtenbach K (2008) Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. Journal of Theoretical Biology 254:621-632CrossRefGoogle Scholar
  14. Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG et al (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. International Journal for Parasitology 36(1):63-70CrossRefGoogle Scholar
  15. Pages F, Orlandi-Pradines E, Corbel V (2007) Vecteurs du paludisme: biologie, diversité, contrôle et protection individuelle. Médecine et Maladies Infectieuses 37:153-161CrossRefGoogle Scholar
  16. Petit D, Rivière-Honegger A (2006) Processus territoriaux et gestion de l’eau en Camargue gardoise. Développement Durable et Territoires 6Google Scholar
  17. Ponçon N, Toty C, L’Ambert G, Le Goff G, Brengues C, Schaffner F et al (2007a) Biology and dynamics of potential malaria vectors in Southern France. Malaria Journal 6(18)Google Scholar
  18. Ponçon N, Toty C, L’Ambert G, Le Goff G, Brengues C, Schaffner F et al (2007b) Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France. Medical and Veterinary Entomology 21:350–357Google Scholar
  19. Ponçon N, Balenghien T, Toty C, Ferré J, Thomas C, Dervieux A et al (2007c) Effects of local anthropogenic changes on potential malaria vector Anopheles hyrcanus and West Nile virus vector Culex modestus, Camargue, France. Emerging Infectious Diseases 13:1810-1815Google Scholar
  20. Ponçon N, Tran A, Toty C, Luty A, Fontenille D (2008) A quantitative risk assessment approach for mosquito-borne diseases: malaria reemergence in Southern France. Malaria Journal 7(147)Google Scholar
  21. Reiter P (2000) From Shakespeare to Defoe: malaria in England in the little ice age. Emerging Infectious Diseases 6:1-11CrossRefGoogle Scholar
  22. Rodhain F, Charmot G (1982) Evaluation des risques de reprise de transmission du paludisme en France. Médecine et Maladies Infectieuses 12:231-236CrossRefGoogle Scholar
  23. Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289(5485):1763-1766Google Scholar
  24. Schoepke A, Steffen R, Gratz N (1998) Effectiveness of personal protection measures against mosquito bites for malaria prophylaxis in travelers. Journal of Travel Medicine 5:188-192CrossRefGoogle Scholar
  25. Schröder W, Schmidt G (2008) Mapping the potential temperature-dependent tertian malaria transmission within the ecoregions of Lower Saxony (Germany). International Journal of Medical Microbiology 298(Suppl 1):38-49CrossRefGoogle Scholar
  26. Thomas CJ, Davies G, Dunn CE (2004) Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends in Parasitology 20:216-220CrossRefGoogle Scholar
  27. Tran A, Ponçon N, Toty C, Linard C, Guis H, Ferré J et al (2008) Use of remote sensing to map larval and adult populations of anopheles species in Southern France. International Journal of Health Geographics 7(9)Google Scholar
  28. van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Global Environmental Change 14:87-99CrossRefGoogle Scholar
  29. van Notten PWF, Rotmans J, van Asselt MBA, Rothman DS (2003) An updated scenario typology. Futures 35:423-443CrossRefGoogle Scholar
  30. Wilensky U (1999) NetLogo, Northwestern University, Evanston, IL: Center for Connected Learning and Computer-Based Modeling. Accessed 8 Sept 2008
  31. Willott E (2004) Restoring nature, without mosquitoes? Restoration Ecology 12:147-153CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2009

Authors and Affiliations

  • Catherine Linard
    • 1
  • Nicolas Ponçon
    • 2
  • Didier Fontenille
    • 2
  • Eric F. Lambin
    • 1
  1. 1.Department of GeographyUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Institut de Recherche pour le Développement (IRD)UR016, Caractérisation et contrôle des populations de vecteursMontpellier Cedex 5France

Personalised recommendations