, Volume 6, Issue 1, pp 121–134 | Cite as

Quality of Life and Health Perceptions Among Fish-Eating Communities of the Brazilian Amazon: An Ecosystem Approach to Well-Being

  • Myriam FillionEmail author
  • Carlos José Sousa Passos
  • Mélanie Lemire
  • Bertrand Fournier
  • Frédéric Mertens
  • Jean Remy Davée Guimarães
  • Donna Mergler
Original Contribution


Mercury (Hg) contamination in the Brazilian Amazon constitutes a serious environmental and public health issue. This study is part of the CARUSO Project, which uses an ecosystem approach to human health to examine the sources, transmission, and effects of Hg in the Brazilian Amazon, with a view to developing preventive intervention strategy. To date, studies have focused on measures of Hg exposure through fish consumption in relation to health effects; little attention has been given to quality of life (QoL). The objective of this study was to examine the relations between QoL and health perceptions, Hg exposure, sociodemographics, living conditions, and lifestyle in communities along the Tapajós River. A total of 456 adults from 13 villages were interviewed and provided hair samples for Hg analysis. Results showed that perceptions of QoL and health are relatively positive, despite elevated Hg exposure. Logistic regression analyses showed that a positive perception of QoL was associated with the absence of chronic illnesses, not smoking, fruit consumption, residing on the banks of the Tapajós, and living in an in-migrants’ community. The positive perception of health was associated with younger age, the absence of reported symptoms of chronic illnesses, and drinking alcoholic beverages. Cluster analysis revealed that the group that reported the highest QoL had a traditional lifestyle, involving daily fishing and high fish consumption. However, this traditional lifestyle is associated with elevated Hg levels and early reported symptoms potentially linked to Hg exposure. These findings underline the importance of understanding the factors underlying QoL to develop adequate strategies to reduce Hg exposure and promote well-being.


mercury traditional lifestyle fishing amazon ecosystem approach 



The authors thank the participants who made this study possible, the work of the Brazilian field assistants, and Marie-Ève Thibault for her administrative support. This study was financed by the International Development Research Center (IDRC) of Canada.


  1. Achá D, Iñiguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L et al. (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Applied and Environmental Microbiology 71:661-665.CrossRefGoogle Scholar
  2. Amorim MI, Mergler D, Bahia MO, Dubeau H, Miranda D, Lebel J et al. (2000) Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. An Acad Bras Cienc 72:497-507.Google Scholar
  3. Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon-Brazil. Ciência e Cultura 50:255-260.Google Scholar
  4. Becker BK (2001) La dimension géopolitique du processus d’occupation de l’Amazonie brésilienne. In: Le mercure en Amazonie: Rôle de l’homme et de l’environnement, risques sanitaires, Carmouze JP, Lucotte M, Boudou A (editors), IRD, Paris, pp 447-471.Google Scholar
  5. Benchimol S (1999) Amazônia—formaçao social e cultural, Manaus: Valer/Editora da Universidade do AmazonasGoogle Scholar
  6. Cattell V (2001) Poor people, poor places, and poor health: the mediating role of social networks and social capital. Soc Sci Med 52:1501-1516.CrossRefGoogle Scholar
  7. Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S et al. (2002) Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ Res 89:1-11.CrossRefGoogle Scholar
  8. Da Silva DS, Lucotte M, Roulet M, Poirier H, Mergler D, Santos EO et al. (2005) Trophic structure and bioaccumulation of mercury in fish of three natural lakes of the Brazilian Amazon. Water, Air and Soil Pollution 165:77-94.CrossRefGoogle Scholar
  9. Del Vecchio FB, Corrente JE, Goncalves A, Faria MM, Padovani CR, Vilarta R (2007) [Multivaried analysis of the interaction between quality of life and physical capacities for people occupationally intoxicated by mercury]. Acta Med Port 20:131-137.Google Scholar
  10. Dolbec J, Mergler D, Larribe F, Roulet M, Lebel J, Lucotte M (2001) Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil. Sci Total Environ 271:87-97.CrossRefGoogle Scholar
  11. Dolbec J, Mergler D, Sousa Passos CJ, Sousa de Morais S, Lebel J (2000) Methylmercury exposure affects motor performance of a riverine population of the Tapajos river, Brazilian Amazon. Int Arch Occup Environ Health 73:195-203.CrossRefGoogle Scholar
  12. Farella N, Lucotte M, Davidson R, Daigle S (2006) Mercury release from deforested soils triggered by base cation enrichment. Sci Total Environ 368:19-29.CrossRefGoogle Scholar
  13. Fleck MP, Louzada S, Xavier M, Chachamovich E, Vieira G, Santos L et al. (1999) [Application of the Portuguese version of the instrument for the assessment of quality of life of the World Health Organization (WHOQOL-100)]. Rev Saude Publica 33:198-205.Google Scholar
  14. Fleck MP, Louzada S, Xavier M, Chachamovich E, Vieira G, Santos L et al. (2000) [Application of the Portuguese version of the abbreviated instrument of quality life WHOQOL-bref]. Rev Saude Publica 34:178-183.Google Scholar
  15. Forget G, Lebel J (2003) Approche écosystémique à la santé humaine. In: Environnement et Santé Publique: Fondements et Pratiques, Gérin M, Gosselin P, Cordier S, Viau C, Quénel P, Dewailly É (editors), Edisem, Sainte-Hyacinthe, Québec, pp 593-638.Google Scholar
  16. Grandjean P, White RF, Nielsen A, Cleary D, de Oliveira Santos EC (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ Health Perspect 107:587-591.CrossRefGoogle Scholar
  17. Guimaraes JR, Roulet M, Lucotte M, Mergler D (2000) Mercury methylation along a lake-forest transect in the Tapajos river floodplain, Brazilian Amazon: seasonal and vertical variations. Sci Total Environ 261:91-98.CrossRefGoogle Scholar
  18. Ibrahim MF, Chung SW (2003) Quality of life of residents living near industrial estates in Singapore. Social Indicators Research 61:203-225.CrossRefGoogle Scholar
  19. Katz SA, Katz RB (1992) Use of hair analysis for evaluating mercury intoxication of the human body: a review. Journal of Applied Toxicology 12:79-84.CrossRefGoogle Scholar
  20. Lebart L, Morineau A, Piron M (2004) Statistique exploratoire multidimensionnelle. Dunod: Paris.Google Scholar
  21. Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F et al. (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res 79:20-32.CrossRefGoogle Scholar
  22. Lebel J, Mergler D, Lucotte M, Amorim M, Dolbec J, Miranda D et al. (1996) Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neurotoxicology 17:157-167.Google Scholar
  23. Maurice-Bourgoin L, Quiroga I, Chincheros J, Courau P (2000) Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure in riparian Amazonian populations. Sci Total Environ 260:73-86.CrossRefGoogle Scholar
  24. Mauro JBN, Guimarães JRD, Hintelmann H, Watras C, Haack L, Coelho-Souza AS (2002) Mercury methylation in macrophytes, periphyton and water: comparative studies with stable and radio-mercury additions. Analytical and Bioanalytical Chemistry 374:983-989.CrossRefGoogle Scholar
  25. Mendes JFG, Motizuki WS (2001) Urban quality of life evaluation scenarios: the case of São Carlos in Brazil. CTBUH Review 1:1-11.Google Scholar
  26. Mertens F, Saint-Charles J, Lucotte M, Mergler D (2008) Emergence and robustness of a community discussion network on mercury contamination and health in the Brazilian Amazon. Health Educ Behav 35:509-521.CrossRefGoogle Scholar
  27. Moran EF (1979) The Trans-Amazonica: coping with a new environment. In: Brazil, Anthropological Perspectives: Essays in Honor of Charles Wagley. Margolis M, Carter WE (Ed.), Columbia University Press: New York.Google Scholar
  28. Murray TP, Sánchez-Choy J (2001) Health, biodiversity, and natural resource use on the Amazon frontier: an ecosystem approach. Cadernos de Saúde Pública 17:181-191.CrossRefGoogle Scholar
  29. NRC (2000) Toxicological Effects of Methylmercury, Washington, DC: National Academy PressGoogle Scholar
  30. Osorio LM (2001) A Brazilian neighbourhood evaluates its quality of life. Women and Environments International Magazine 51:26-27.Google Scholar
  31. Parker EP (1985) The Amazon caboclo: an introduction and overview. In: The Amazon Caboclo: Historical and Contemporary Perspectives,vol 32, Parker EP (editor), Virginia: Studies in Third World Societies, XVII ppGoogle Scholar
  32. Passos CJ, Mergler D, Gaspar E, Morais S, Lucotte M, Larribe F et al. (2003) Eating tropical fruit reduces mercury exposure from fish consumption in the Brazilian Amazon. Environ Res 93:123-130.CrossRefGoogle Scholar
  33. Passos CJ, Mergler D, Lemire M, Fillion M, Guimaraes JR (2007) Fish consumption and bioindicators of inorganic mercury exposure. Sci Total Environ 373:68-76.CrossRefGoogle Scholar
  34. Poortinga W (2006) Social relations or social capital? Individual and community health effects of bonding social capital. Soc Sci Med 63:255-270.CrossRefGoogle Scholar
  35. Programa das Naçoes Unidas para o Desenvolvimento PNUD (2003) Atlas do Desenvolvimento no Brasil. Available: [accessed July 14, 2008]
  36. Rogers RG (1996) The effects of family composition, health, and social support linkages on mortality. J Health Soc Behav 37:326-338.CrossRefGoogle Scholar
  37. Roulet M, Guimarães JRD, Lucotte M (2001a) Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain: effect of seasonal inundation? Water, Air and Soil Pollution 128:41-60.CrossRefGoogle Scholar
  38. Roulet M, Lucotte M, Canuel R, Farella N (2001b) Spatio-temporal geochemistry of mercury in waters of the Tapajós and Amazon rivers, Brazil. Limnology and Oceanography 46:1141-1157.CrossRefGoogle Scholar
  39. Roulet M, Lucotte M, Canuel R, Farella N, Courcelles M, Guimarães JRD et al. (2000) Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon. Chemical Geology 165:243-261.CrossRefGoogle Scholar
  40. Roulet M, Lucotte M, Saint-Aubin A, Tran S, Rheault I, Farella N et al. (1998) The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajos River Valley, Para state, Brazil. Sci Total Environ 223:1-24.CrossRefGoogle Scholar
  41. Roulet ML, Farella N, Serique G, Coelho H, Passos CJS, de Jesus da Silva E, et al. (1999) Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air and Soil Pollution 112:297–313Google Scholar
  42. Santos EO (2001) Enquêtes sanitaires et contaminations mercurielles en Amazonie brésilienne. In: Le mercure en Amazonie: Rôle de l’homme et de l’environnement, risques sanitaires, Carmouze JP, Lucotte M, Boudou A (editors), Paris: IRDGoogle Scholar
  43. Saxena S, Carlson D, Billington R (2001) The WHO quality of life assessment instrument (WHOQOL-Bref): the importance of its items for cross-cultural research. Qual Life Res 10:711-721.CrossRefGoogle Scholar
  44. Spry DJ, Wiener JG (1991) Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environmental Pollution 71:243-304.CrossRefGoogle Scholar
  45. Telmer K, Costa M, Simoes Angelica R, Araujo ES, Maurice Y (2006) The source and fate of sediment and mercury in the Tapajos River, Para, Brazilian Amazon: ground- and space-based evidence. J Environ Manage 81:101-113.CrossRefGoogle Scholar
  46. TheWHOQOLGroup (1995) The World Health Organization Quality of Life assessment (WHOQOL): position paper from the World Health Organization. Soc Sci Med 41:1403-1409.CrossRefGoogle Scholar
  47. Vlassoff C, Moreno CG (2002) Placing gender at the centre of health programming: challenges and limitations. Social Science and Medicine 54:1713-1723.CrossRefGoogle Scholar
  48. Wheatley B, Wheatley MA (2000) Methylmercury and the health of indigenous peoples: a risk management challenge for physical and social sciences and for public health policy. Sci Total Environ 259:23-29.CrossRefGoogle Scholar
  49. WHO (1989) Environmental Health Criteria 86: Mercury: environmental aspects. WHO: Geneva.Google Scholar
  50. Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2:8.CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2009

Authors and Affiliations

  • Myriam Fillion
    • 1
    Email author
  • Carlos José Sousa Passos
    • 2
  • Mélanie Lemire
    • 1
  • Bertrand Fournier
    • 3
  • Frédéric Mertens
    • 4
  • Jean Remy Davée Guimarães
    • 5
  • Donna Mergler
    • 1
  1. 1.Centre de recherche interdisciplinaire sur la biologie, la santé, la société et l’environnement (CINBIOSE)Université du Québec à MontréalMontréalCanada
  2. 2.Faculdade UnB PlanaltinaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Département de mathématiquesUniversité du Québec à MontréalMontréalCanada
  4. 4.Centro de Desenvolvimento SustentávelUniversidade de BrasíliaBrasíliaBrazil
  5. 5.Laboratório de Traçadores, Instituto de BiofísicaFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations