EcoHealth

, 4:346

Towards a Case Definition for Devil Facial Tumour Disease: What Is It?

  • Stephen B. Pyecroft
  • Anne-Maree Pearse
  • Richmond Loh
  • Kate Swift
  • Kathy Belov
  • Nolan Fox
  • Erin Noonan
  • Dane Hayes
  • Alex Hyatt
  • Lingfa Wang
  • David Boyle
  • Jeff Church
  • Debra Middleton
  • Robert Moore
Special Focus: Tasmanian Devil Declines

Abstract

In the mid 1990s an emerging disease characterised by the development of proliferative lesions around the face of Tasmanian devils (Sarcophilus harrisii) was observed. A multi-disciplinary approach was adopted to define the condition. Histopathological and transmission electron microscopic examination combined with immunohistochemistry help define Devil Facial Tumour Disease (DFTD) as a neoplastic condition of cells of neuroendocrine origin. Cytogenetic analysis of neoplastic tissue revealed it to be markedly different from normal devil tissue and having a consistent karyotype across all tumours examined. Combined with evidence for Major histocompatability (MHC) gene analysis there is significant evidence to confirm the tumour is a transmissible neoplasm.

Keywords

Tasmanian devil Sarcophilus harrisii neoplasm karyotype facial tumour neuroendocrine 

References

  1. Barakat M.T., Meeran K., Bloom S.R. (2004) Neuroendocrine tumours, Endocr. Relat. Cancer, 11(1):1–18CrossRefGoogle Scholar
  2. Bloom F., Paff G., Norback C. R. (1950), “The transmissible venereal tumour of the dog studies indicating that the tumour cells are mature end cells of reticulo-endothelial origin, Am. J. Path. 27:119–140Google Scholar
  3. Church J.S., Corino G.L., Woodhead A.L. (1997). Biopolymers, 42:7–17Google Scholar
  4. Dingli D., Nowak MA. (2006) Cancer biology: infectious tumour cells. Nature, 443(7107):35–6CrossRefGoogle Scholar
  5. Fraser R. D. B., MacRae T. P., Miller A. J. (1964). J. Mol. Biol., 10:147–156Google Scholar
  6. Gratzinger C. (2004) Tumour biology of gastroenteropancreatic neuroendocrine tumours. Neuroendocrinology, 80(Suppl 1):8–11CrossRefGoogle Scholar
  7. Griner L.A. (1979) Neoplasms of Tasmanian Devils (Sarcophilus harrisii). J. Nat. Cancer Inst, 62:589–595Google Scholar
  8. Hawkins C., Baars C., Hesterman H., Hocking G.J., Jones M.E., Lazenby B., Mann D., Mooney N., Pemberton D., Pyecroft S., Restani M., Wiersma J. (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrissii. Biol. Conserv. 131:307–324CrossRefGoogle Scholar
  9. Loh, R., Bergfeld, J., Hayes, D., O’Hara, A., Pyecroft, S., Raidal, S., Sharpe, R. (2006a) The pathology of Devil Facial Tumour Disease (DFTD) in Tasmanian Devils (Sarcophilus harrissii), Vet Pathol 43: 890–895Google Scholar
  10. Loh, R., Hayes, D., Mahjoor, A., O’Hara, A., Pyecroft, S., Raidal, S. (2006b) The Immunohistochemical characterisation of Devil Facial Tumour Disease (DFTD) in Tasmanian Devils (Sarcophilus harrissii), Vet Pathol 43: 896–903Google Scholar
  11. Lyman, D., Murray-Wijelath, J. (2005). Appl. Spectrosc., 59: 26–32Google Scholar
  12. Meuten D.J. (2002) Tumours in Domestic Animals, Iowa State Press, Des Moines, IA, 755–769Google Scholar
  13. Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA. (2006) Clonal origin and evolution of a transmissible cancer. Cell 126(3):477–87CrossRefGoogle Scholar
  14. Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H, Grolla A, Strong JE, Towner JS, Geisbert TW, Jahrling PB, Buchen-Osmond C, Ellerbrok H, Sanchez-Seco MP, Lussier Y, Formenty P, Nichol MS, Feldmann H, Briese T, Lipkin WI. 2007. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis. 13(1):73–81CrossRefGoogle Scholar
  15. Pearse A-M, Swift K. 2006 Transmission of devil facial-tumour disease. Nature, 439:549CrossRefGoogle Scholar
  16. VonHoldt BM, Ostrander EA. (2006) The singular history of a canine transmissible tumor. Cell, 126(3):445–7CrossRefGoogle Scholar
  17. Wang L.F., Yu M. (2004). Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Cur Drug Targets. 5(1):1–15Google Scholar
  18. Woodhead, A.L., Harrigan, F.J., Church, J.S. (1997). Assessment of wool chlorination by infrared spectroscopy—II. The chemometric approach. Vib. Spectrosc., 15:179–189Google Scholar
  19. York G.K., Steinberg D.A. 2002 The philosophy of Hughlings Jackson. Journal of the Royal Society of Medicine, 96:314–318CrossRefGoogle Scholar

Copyright information

© Ecohealth Journal Consortium 2007

Authors and Affiliations

  • Stephen B. Pyecroft
    • 1
  • Anne-Maree Pearse
    • 1
  • Richmond Loh
    • 1
  • Kate Swift
    • 1
  • Kathy Belov
    • 2
  • Nolan Fox
    • 1
  • Erin Noonan
    • 1
  • Dane Hayes
    • 1
  • Alex Hyatt
    • 3
  • Lingfa Wang
    • 3
  • David Boyle
    • 3
  • Jeff Church
    • 4
  • Debra Middleton
    • 3
  • Robert Moore
    • 3
  1. 1.Department of Primary Industries and WaterAnimal Health Laboratories, Diagnostic Services BranchKings MeadowsAustralia
  2. 2.Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary ScienceThe University of SydneyNew South WalesAustralia
  3. 3.Australian Animal Health LaboratoryCSIRO Livestock IndustriesGeelongAustralia
  4. 4.CSIRO Textile and Fibre TechnologyClaytonAustralia

Personalised recommendations