Advertisement

Journal of Public Health

, Volume 24, Issue 3, pp 165–174 | Cite as

A nuanced picture of illicit drug use in 17 Italian cities through functional principal component analysis of temporal wastewater data

  • Stefania Salvatore
  • Kathrine Frey Frøslie
  • Jo Røislien
  • Ettore Zuccato
  • Sara Castiglioni
  • Jørgen G. Bramness
Original Article

Abstract

Background

Wastewater-based epidemiology is a novel approach in drug use epidemiology, which may provide more objective estimates of illicit drug use in a community. Functional data analysis (FDA) is a statistical framework specifically developed for analysing curves. We applied FDA to study weekly temporal patterns in wastewater curves for six different drugs in Italy.

Methods

Wastewater samples were collected over seven consecutive days in November 2013, from the inlet of 17 wastewater treatment plants in 17 Italian cities. The weekly temporal features of the drug loads throughout the week were extracted using functional principal component analysis (FPCA), obtaining functional principal component (FPC) curves and corresponding FPC score variables. The FPC score variables were used as outcome variables in linear regression analyses.

Results

The most important weekly features of the drug loads were captured by the first three FPCs. The first FPC represented the general level of drug in the wastewater, while the second and third FPCs represented the discrepancy between the weekend peak and midweek level, and the weekend peak timing respectively. Cannabis was the predominant drug in the Italian wastewater, while ecstasy (MDMA) was the drug with the highest discrepancy between the weekend peak and midweek level. The Italian cities showed different patterns of drug use depending on several characteristics of the cities.

Conclusion

FPCA extracted detailed features of the weekly temporal patterns of the use of drugs derived from the wastewater analysis. This may help in understanding and monitoring the profile of drug use in a specific community.

Keywords

Wastewater-based epidemiology Illicit drugs Functional principal component analysis Pattern of drug use 

Notes

Acknowledgments

We gratefully acknowledge the European Union and the Norwegian Centre for Addiction Research (SERAF) for the financial support. We would also like to thank all colleagues from the SEWPROF team and SCORE group (www.score-cost.eu).

Contributors

All authors have contributed to this scientific work and have approved the final version of the manuscript. EZ and SC have provided the wastewater data and revised the paper. SS, KFF, JR and JGB designed the study, the data analysis and revised the paper. SS analysed the data and drafted the manuscript.

Data sharing statement

The data used in this study are freely available: http://www.politicheantidroga.gov.it/attivita/pubblicazioni/relazioni-al-parlamento.aspx

Compliance with ethical standards

Funding

The study is funded by the EU-International Training Network SEWPROF (Marie Curie-FP7-PEOPLE Grant #317205) and the Norwegian Centre for Addiction Research (SERAF). The analytical campaign in Italy (“Aqua Drugs” Project) was supported by Dipartimento Politiche Antidroga (Presidenza del Consiglio dei Ministri, Rome, Italy).

Competing interests

The authors declare that they have no competing interests.

Supplementary material

10389_2016_717_MOESM1_ESM.doc (40 kb)
Table S1 Summary statistics among cities for each drug per each day (DOC 40 kb)
10389_2016_717_Fig3_ESM.jpg (115 kb)
Fig. S1

Results from the FPCA of the supplementary analysis. Plots a and b show the mean of the fitted curves of the standardised data (solid line) and how the shape of a temporal curve differs from the mean curve if a multiple of the SFPC curve is added to (+ +) or subtracted from (- -) the mean curve. The multiples correspond to one SD of the SFPC1 and SFPC2 scores, respectively. Plot c shows the bivariate scatter plot of SFPCs’ scores. In the scatter plot, each city is identified by a number, while each drug is identified by a colour (JPG 114 kb)

10389_2016_717_MOESM2_ESM.eps (8 kb)
High Resolution Image (EPS 7 kb)

References

  1. Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control 19:716–723. doi: 10.1109/Tac.1974.1100705 CrossRefGoogle Scholar
  2. Ardizzi G, Petraglia C, Piacenza M, Turati G (2014) Measuring the underground economy with the currency demand approach: a reinterpretation of the methodology, with an application to Italy. Rev Income Wealth 60:747–772. doi: 10.1111/Roiw.12019 Google Scholar
  3. Banta-Green CJ, Field JA, Chiaia AC, Sudakin DL, Power L, de Montigny L (2009) The spatial epidemiology of cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater. Addiction 104:1874–1880. doi: 10.1111/j.1360-0443.2009.02678.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin HeidelbergGoogle Scholar
  5. Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R (2006) Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry. Anal Chem 78:8421–8429. doi: 10.1021/ac061095b CrossRefPubMedGoogle Scholar
  6. Castiglioni S, Borsotti A, Senta I, Zuccato E (2015) Wastewater analysis to monitor spatial and temporal patterns of use of two synthetic recreational drugs, ketamine and mephedrone, in Italy. Environ Sci TechnolGoogle Scholar
  7. Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31:377–403CrossRefGoogle Scholar
  8. Darke S, Kaye S, Duflou J (2006) Comparative cardiac pathology among deaths due to cocaine toxicity, opioid toxicity and non‐drug‐related causes. Addiction 101:1771–1777CrossRefPubMedGoogle Scholar
  9. Dipartimento Politiche Antidroga PdCdM, Rome, Italy (2013) Relazione Annuale al Parlamento sull'uso di sostanze stupefacenti e sulle tossicodipendenze in ItaliaGoogle Scholar
  10. EMCDDA (2009) The state of the drug problem in the European Union and NorwayGoogle Scholar
  11. EMCDDA (2010) The state of the drugs problem in EuropeGoogle Scholar
  12. EMCDDA (2013) European drug report: trends and developmentsGoogle Scholar
  13. Froslie KF, Roislien J, Qvigstad E, Godang K, Bollerslev J, Voldner N, Henriksen T, Veierod MB (2013) Shape information from glucose curves: functional data analysis compared with traditional summary measures. BMC Med Res Methodol 13:6. doi: 10.1186/1471-2288-13-6 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gossop M, Marsden J, Stewart D, Rolfe A (2000) Reductions in acquisitive crime and drug use after treatment of addiction problems: 1-year follow-up outcomes. Drug Alcohol Depend 58:165–172CrossRefPubMedGoogle Scholar
  15. Griffiths P, Mravcik V, Lopez D, Klempova D (2008) Quite a lot of smoke but very limited fire—the use of methamphetamine in Europe. Drug Alcohol Rev 27:236–242. doi: 10.1080/09595230801932588 CrossRefPubMedGoogle Scholar
  16. Honaker J, King G, Blackwell M (2011) Amelia II: a program for missing data. J Stat Softw 45:1–47CrossRefGoogle Scholar
  17. Kinyua J, Anderson TA (2012) Temporal analysis of the cocaine metabolite benzoylecgonine in wastewater to estimate community drug use. J Forensic Sci 57:1349–1353. doi: 10.1111/j.1556-4029.2012.02135.x CrossRefPubMedGoogle Scholar
  18. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184CrossRefPubMedGoogle Scholar
  19. Ort C, van Nuijs AL, Berset JD, Bijlsma L, Castiglioni S, Covaci A, de Voogt P, Emke E, Fatta-Kassinos D, Griffiths P, Hernandez F, Gonzalez-Marino I, Grabic R, Kasprzyk-Hordern B, Mastroianni N, Meierjohann A, Nefau T, Ostman M, Pico Y, Racamonde I, Reid M, Slobodnik J, Terzic S, Thomaidis N, Thomas KV (2014) Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. doi: 10.1111/add.12570 PubMedCentralGoogle Scholar
  20. Percival DB, Walden AT (2006) Wavelet methods for time series analysis, vol 4. Cambridge University Press, CambridgeGoogle Scholar
  21. Prichard J, Hall W, de Voogt P, Zuccato E (2014) Sewage epidemiology and illicit drug research: the development of ethical research guidelines. Sci Total Environ 472:550–555. doi: 10.1016/j.scitotenv.2013.11.039 CrossRefPubMedGoogle Scholar
  22. Quaglio G, Talamini G, Lechi A, Venturini L, Lugoboni F, Mezzelani P (2001) Study of 2708 heroin‐related deaths in north‐eastern Italy 1985–98 to establish the main causes of death. Addiction 96:1127–1137CrossRefPubMedGoogle Scholar
  23. Ramsay JO, Hooker G, Graves S (2009) Functional data analysis with R and MATLAB. Use R! Springer, Dordrecht, New YorkCrossRefGoogle Scholar
  24. Ramsay JOSB (2005) Functional data analysis, 2nd edn. Springer, Berlin HeidelbergGoogle Scholar
  25. Reid MJ, Langford KH, Morland J, Thomas KV (2011) Quantitative assessment of time dependent drug-use trends by the analysis of drugs and related metabolites in raw sewage. Drug Alcohol Depend 119:179–186. doi: 10.1016/j.drugalcdep.2011.06.007 CrossRefPubMedGoogle Scholar
  26. Roislien J, Winje B (2013) Feature extraction across individual time series observations with spikes using wavelet principal component analysis. Stat Med 32:3660–3669. doi: 10.1002/sim.5797 CrossRefPubMedGoogle Scholar
  27. Salvatore S, Bramness JG, Reid MJ, Thomas KV, Harman C, Roislien J (2015) Wastewater-based epidemiology of stimulant drugs: functional data analysis compared to traditional statistical methods. PLoS One 10, e0138669. doi: 10.1371/journal.pone.0138669 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Team RC (2015) R: a language and environment for statistical computing, vol 3.2.1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  29. Thomas KV, Bijlsma L, Castiglioni S, Covaci A, Emke E, Grabic R, Hernandez F, Karolak S, Kasprzyk-Hordern B, Lindberg RH, de Alda M L, Meierjohann A, Ort C, Pico Y, Quintana JB, Reid M, Rieckermann J, Terzic S, van Nuijs AL, de Voogt P (2012) Comparing illicit drug use in 19 European cities through sewage analysis. Sci Total Environ 432:432–439. doi: 10.1016/j.scitotenv.2012.06.069 CrossRefPubMedGoogle Scholar
  30. van Nuijs AL, Castiglioni S, Tarcomnicu I, Postigo C, de Alda M L, Neels H, Zuccato E, Barcelo D, Covaci A (2011a) Illicit drug consumption estimations derived from wastewater analysis: a critical review. Sci Total Environ 409:3564–3577. doi: 10.1016/j.scitotenv.2010.05.030 CrossRefPubMedGoogle Scholar
  31. van Nuijs AL, Mougel JF, Tarcomnicu I, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2011b) A one year investigation of the occurrence of illicit drugs in wastewater from Brussels, Belgium. J Environ Monit 13:1008–1016. doi: 10.1039/c0em00686f CrossRefPubMedGoogle Scholar
  32. van Nuijs AL, Mougel JF, Tarcomnicu I, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2011c) Sewage epidemiology—a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium. Environ Int 37:612–621. doi: 10.1016/j.envint.2010.12.006 CrossRefPubMedGoogle Scholar
  33. Vidakovic B (2009) Statistical modeling by wavelets vol 503. John Wiley & SonsGoogle Scholar
  34. Warner-Smith M, Darke S, Lynskey M, Hall W (2001) Heroin overdose: causes and consequences. Addiction 96:1113–1125. doi: 10.1080/09652140120060716 CrossRefPubMedGoogle Scholar
  35. Winje BA, Roislien J, Froen JF (2012) Temporal patterns in count-to-ten fetal movement charts and their associations with pregnancy characteristics: a prospective cohort study. BMC Pregnancy Childbirth 12:124. doi: 10.1186/1471-2393-12-124 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Winje BA, Roislien J, Saastad E, Eide J, Riley CF, Stray-Pedersen B, Froen JF (2013) Wavelet principal component analysis of fetal movement counting data preceding hospital examinations due to decreased fetal movement: a prospective cohort study. BMC Pregnancy Childbirth 13:172. doi: 10.1186/1471-2393-13-172 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zuccato E, Chiabrando C, Castiglioni S, Bagnati R, Fanelli R (2008) Estimating community drug abuse by wastewater analysis. Environ Health Perspect 116:1027–1032. doi: 10.1289/ehp.11022 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zuccato E, Castiglioni S, Tettamanti M, Olandese R, Bagnati R, Melis M, Fanelli R (2011) Changes in illicit drug consumption patterns in 2009 detected by wastewater analysis. Drug Alcohol Depend 118:464–469. doi: 10.1016/j.drugalcdep.2011.05.007 CrossRefPubMedGoogle Scholar
  39. Zuccato E, Castiglioni S (2012) Consumi di sostanze stupefacenti nelle città europee. Ricerca E Pratica 3:252–260Google Scholar
  40. Zuccato E, Castiglioni S, Senta I, Borsotti A, Genetti B, Andreotti A, Pieretti G, Serpelloni G (2016) Population surveys compared with wastewater analysis for monitoring illicit drug consumption in Italy in 2010–2014. Drug Alcohol Depend. doi: 10.1016/j.drugalcdep.2016.02.003 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefania Salvatore
    • 1
  • Kathrine Frey Frøslie
    • 2
    • 3
  • Jo Røislien
    • 1
    • 2
  • Ettore Zuccato
    • 4
  • Sara Castiglioni
    • 4
  • Jørgen G. Bramness
    • 1
  1. 1.Norwegian Centre for Addiction ResearchUniversity of OsloOsloNorway
  2. 2.Oslo Centre for Biostatistics and EpidemiologyInstitute of Basic Medical SciencesOsloNorway
  3. 3.Norwegian Resource Centre for Women’s Health, Division of Obstetrics and GynaecologyOslo University Hospital, RikshospitaletOsloNorway
  4. 4.Department of Environmental Health SciencesIRCCS – Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly

Personalised recommendations