, Volume 5, Issue 1, pp 45–50 | Cite as

Signet ring cell carcinoma of the esophagus treated by video-assisted surgery: report of a case

  • Naohiko Koide
  • Akira Suzuki
  • Hiroyasu Saito
  • Masato Kitazawa
  • Hiroshi Kanaya
Case Report


We report a case of Barrett’s adenocarcinoma consisting of a signet ring cell carcinoma (SIG) and well-differentiated adenocarcinoma treated by video-assisted surgery. The patient was a 73-year-old man with esophagitis endoscopically detected 5 years earlier. Esophagogastroscopy showed an ulcerative tumor (lesion 1) with a small protruding tumor (lesion 2) in the lower esophagus. Biopsy specimens taken from lesions 1 and 2 showed SIG and a well-differentiated adenocarcinoma, respectively. The patient underwent video-assisted surgery for the esophageal carcinoma. Macroscopically, the resected tumor consisted of a type 2 tumor (lesion 1, 25 mm in diameter) and a type 0-IIa tumor (lesion 2, 10 mm in diameter) of the lower esophagus. Histologically, lesion 1 showed SIG invading the submucosal layer of the esophagus, and lesion 2 showed a well-differentiated adenocarcinoma limited to the mucosa. The two lesions were continuously observed, and a moderately differentiated adenocarcinoma was observed between lesions 1 and 2. Near the tumor, the double muscle layer of the mucosa and the esophageal glands were observed under the columnar epithelium. In immunohistochemistry, both lesions showed positive reactions for MUC5AC and MUC2 but showed no reaction for MUC6. The tumor was diagnosed as SIG concomitant with a well-to moderately differentiated adenocarcinoma arising from Barrett’s esophagus (pT1b pN0 M0). The patient is alive without recurrence 60 months after surgery.

Key words

Signet ring cell carcinoma Barrett’s esophagus Video-assisted surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Japanese Society for Esophageal Disease. Comprehensive registry of esophageal cancer in Japan, 1999. Esophagus 2005;2:43–69.CrossRefGoogle Scholar
  2. 2.
    Devesa SS, Blot WJ, Fraumeni JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer (Phila) 1998;83:2049–2053.CrossRefGoogle Scholar
  3. 3.
    Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 2005;97:142–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Paraf F, Flejou JF, Pignon JP, Fekete F, Potet F. Surgical pathology of adenocarcinoma arising in Barrett’s esophagus. Am J Surg Pathol 1995;19:183–191.PubMedGoogle Scholar
  5. 5.
    Chirieac LR, Swisher SG, Correa AM, Ajani JA, Komaki RR, Rashid A, et al. Signet-ring cell or mucinous histology after preoperative chemoradiation and survival in patients with esophageal or esophagogastric junction adenocarcinoma. Clin Cancer Res 2005;11:2229–2236.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoshihara Y, Kogure T. What are longitudinal vessels? Endoscopic observation and clinical significance of longitudinal vessels in the lower esophagus. Esophagus 2006;3:145–150.CrossRefGoogle Scholar
  7. 7.
    Takubo K, Sasajima K, Yamashita K, Tanaka Y, Fujita K. Double muscularis mucosae in Barrett’s esophagus. Hum Pathol 1991;22:1158–1161.PubMedCrossRefGoogle Scholar
  8. 8.
    De Bolos C, Garrido M, Real FX. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 1995;109:723–734.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang SK, Dohrman AF, Basbaum CB, Ho SB, Tsuda T, Toribara NW, et al. Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology 1994;107:28–36.PubMedGoogle Scholar
  10. 10.
    James R, Erler T, Kazenwadel J. Structure of the murine home-obox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J Biol Chem 1994;269:15229–15237.PubMedGoogle Scholar
  11. 11.
    Ho SB, Roberton AM, Shekels LL, Lyftogt CT, Niehans GA, Toribara NW. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology 1995;109:735–747.PubMedCrossRefGoogle Scholar
  12. 12.
    Arul GS, Moorghen M, Myerscough N, Alderson DA, Spicer RD, Corfield AP. Mucin gene expression in Barrett’s oesophagus: an in situ hybridization and immunohistochemical study. Gut 2000;47:753–761.PubMedCrossRefGoogle Scholar
  13. 13.
    Warson C, van de Bovenkamp JHB, Male AMKV, Buller HA, Einerhand AWC, Ectors NLEY, et al. Barrett’s esophagus is characterized by expression of gastric-type mucin (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Hum Pathol 2002;33:660–668.PubMedCrossRefGoogle Scholar
  14. 14.
    Fluke U, Steinborn E, Dries V, Monig SP, Schneider PM, Thile J, et al. Immunoreactivity of cytokines (CK7, CK20) and mucin peptide core antigens (MUC1, MUC2, MUC5AC) in adenocarcinomas, normal and metaplastic tissues of the distal oesophagus, oesophago-gastric junction and proximal stomach. Histopathology (Oxf) 2003;43:127–134.CrossRefGoogle Scholar
  15. 15.
    Glickman JN, Blount PL, Sanchez CA, Cowan DS, Wongsurawat VJ, Reid BJ, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum Pathol 2006;37:1304–1315.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakanishi Y. Histopathologic features of the esophagogastric junction. Esophagus 2006;3:139–143.CrossRefGoogle Scholar
  17. 17.
    Nakamura T, Tohyama H, Nagamachi Y. “Barrett’s esophagus” adenocarcinoma: a case report. Jpn J Surg 1980;10:137–141.PubMedCrossRefGoogle Scholar
  18. 18.
    Matsumoto Y, Arai N, Mieno H, Murakami K, Ishii K, Mitomi H. Adenocarcinoma complicating Barrett’s esophagus: an analysis of cell proliferation. J Gastroenterol 2001;36:410–414.PubMedCrossRefGoogle Scholar
  19. 19.
    Hulscher JB, van Sandick JB, de Boer AG, Wijnhoven BP, Tijssen JG, Fockens P, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med 2002;347:1662–1669.PubMedCrossRefGoogle Scholar
  20. 20.
    Luketich JD, Alvelo-Rivera M, Buenaventura PO, Christie NA, McCaughan JS, Litle VR, et al. Minimally invasive esophagectomy: outcome in 222 patients. Ann Surg 2003;238:486–494.PubMedGoogle Scholar
  21. 21.
    Palanivelu C, Prakash A, Senthilkumar R, Senthlinathan P, Parthasarathi R, Rajan PS, et al. Minimally invasive esophagectomy: thoracoscopic mobilization of the esophagus and mediastinal lymphadenectomy in prone position: experience of 130 patients. J Am Coll Surg 2006;203:7–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Osugi H, Takemura M, Higashino H, Takada N, Lee S, Kinoshita H. A comparison of video-assisted thoracoscopic oesophagectomy and radial lymph node dissection for squamous cell cancer of the oesophagus with open operation. Br J Surg 2003;90:108–113.PubMedCrossRefGoogle Scholar

Copyright information

© Japan Esophageal Soceity and Springer Japan 2008

Authors and Affiliations

  • Naohiko Koide
    • 1
  • Akira Suzuki
    • 1
  • Hiroyasu Saito
    • 1
  • Masato Kitazawa
    • 1
  • Hiroshi Kanaya
    • 2
  1. 1.Department of SurgeryShinshu University School of MedicineMatsumotoJapan
  2. 2.Department of SurgeryAzumi General HospitalNaganoJapan

Personalised recommendations