Advertisement

Japanese Journal of Ophthalmology

, Volume 63, Issue 6, pp 457–466 | Cite as

Macular vessel density in untreated normal tension glaucoma with a hemifield defect

  • Nozomu Uchida
  • Kyoko IshidaEmail author
  • Ayako Anraku
  • Asuka Takeyama
  • Goji Tomita
Clinical Investigation
  • 64 Downloads

Abstract

Purpose

To investigate macular vessel density (MVD) and structural alterations in untreated normal tension glaucoma (NTG) with a hemifield defect (HFD) and to compare these with the findings in healthy eyes.

Study design

Case series with a healthy group for comparison.

Methods

Thirty-four eyes of 34 untreated NTG patients with HFD and 28 eyes of 28 healthy subjects were enrolled. RTVue-XR AvantiTM (Optovue, Inc.), a combined OCT-A and SD-OCT system, was used to determine MVD and inner macular thickness (IMT) measurements. Mean circumpapillary retinal nerve fiber (cpRNFL) and macular ganglion cell complex (mGCC) thicknesses were measured with the RTVue-100TM (Optovue, Inc.). Wilcoxon signed-rank test was used to evaluate differences between defective and normal hemifields in NTG eyes and Mann–Whitney U test to evaluate differences between normal hemifields in NTG eyes and healthy eyes.

Results

In comparison with healthy eyes, the normal hemifields of NTG eyes showed significantly reduced MVD, as well as cpRNFL and mGCC thicknesses, although IMT did not differ between the two groups. The defective hemifield in NTG eyes showed significantly reduced IMT, as well as cpRNFL and mGCC thicknesses, compared with the normal hemifield, although MVD did not differ between the two hemifields.

Conclusion

Hemodynamic deficiencies and structural damage might have already begun in the perimetrically normal hemifields of NTG eyes. Further studies are needed to elucidate whether the reduction in MVD may precede structural changes or the reduction in vasculature and structural loss may vary with disease severity in at least in some cases.

Keywords

Optical coherence tomography angiography Normal tension glaucoma Macular vessel density Hemifield defect 

Notes

Acknowledgements

Kyoko Ishida reports a grant from JSPS KAKENHI (Grant number JP 26462634).

Conflicts of interest

U Nozomu, None; K. Ishida, Grant (JSPS KAKENHI), Lecture fee (Alcon Pharma, Pfizer, Santen, Senju, Otsuka, Kowa, AMO, Sucampo, GlaxoSmithKline, JFC Sales Plan); A. Anraku, Lecture fee (Santen, Alcon Pharma, Kowa, JFC Sales Plan); A. Takeyama, None; G. Tomita, Grant (Alcon Pharma, Pfizer, Santen, Senju, TOPCON CORPORATION, Handaya, Kowa Pharmaceutical, Otsuka, AMO), Lecture fee (Pfizer, Santen, Senju, Otsuka, Japan Focus), Consultant fee (Allergan).

References

  1. 1.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901–11.CrossRefGoogle Scholar
  2. 2.
    Mallick J, Devi L, Malik PK, Mallick J. Update on normal tension glaucoma. J Ophthalmic Vis Res. 2016;11:204–8.CrossRefGoogle Scholar
  3. 3.
    Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 2018;32:924–30.CrossRefGoogle Scholar
  4. 4.
    Razeghinejad MR, Lee D. Managing normal tension glaucoma by lowering the intraocular pressure. Surv Ophthalmol. 2019;64:111–6.CrossRefGoogle Scholar
  5. 5.
    Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol. 2019;64(1):101–10.CrossRefGoogle Scholar
  6. 6.
    Komori S, Ishida K, Yamamoto T. Results of long-term monitoring of normal-tension glaucoma patients receiving medical therapy: results of an 18-year follow-up. Graefes Arch Clin Exp Ophthalmol. 2014;252:1963–70.CrossRefGoogle Scholar
  7. 7.
    Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018;60:139–51.CrossRefGoogle Scholar
  8. 8.
    Takeyama A, Ishida K, Anraku A, Ishida M, Tomita G. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1751857.  https://doi.org/10.1155/2018/1751857.eCollection2018.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123:2498–508.CrossRefGoogle Scholar
  10. 10.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Investig Ophthalmol Vis Sci. 2016;57:451–9.CrossRefGoogle Scholar
  11. 11.
    Pradhan ZS, Dixit S, Sreenivasaiah S, Rao HL, Venugopal JP, Devi S, et al. A sectoral analysis of vessel density measurements in perimetrically intact regions of glaucomatous eyes: an optical coherence tomography angiography study. J Glaucoma. 2018;27:525–31.PubMedGoogle Scholar
  12. 12.
    Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol. 2017;182:107–17.CrossRefGoogle Scholar
  13. 13.
    Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018;125:1720–8.CrossRefGoogle Scholar
  14. 14.
    Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, et al. Optical coherence tomography angiography macular vascular density measurements and the central 10-2 visual field in glaucoma. J Glaucoma. 2018;27:481–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, et al. Macula vessel density and thickness in early primary open angle glaucoma. Am J Ophthalmol. 2019;199:120–32.CrossRefGoogle Scholar
  16. 16.
    Chen CL, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudumbai RC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol. 2017;135:461–8.CrossRefGoogle Scholar
  17. 17.
    Akagi T, Iida Y, Nakanishi H, Terada N, Morooka S, Yamada H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol. 2016;168:237–49.CrossRefGoogle Scholar
  18. 18.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124:709–19.CrossRefGoogle Scholar
  19. 19.
    Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, et al. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77.CrossRefGoogle Scholar
  20. 20.
    Anraku A, Ishida K, Enomoto N, Takagi S, Ito H, Takeyama A, et al. Association between optic nerve head microcirculation and macular ganglion cell complex thickness in eyes with untreated normal tension glaucoma and a hemifield defect. J Ophthalmol. 2017;2017:3608396.  https://doi.org/10.1155/2017/3608396 Epub 2017 Mar 23.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sehi M, Goharian I, Konduru R, Tan O, Srinivas S, Sadda SR, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014;12:750–8.CrossRefGoogle Scholar
  22. 22.
    Wan KH, Lam AKN, Leung CK. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol. 2018;136:866–74.CrossRefGoogle Scholar
  23. 23.
    Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2018;256:1499–508.CrossRefGoogle Scholar
  24. 24.
    Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Investig Ophthalmol Vis Sci. 2017;58:3637–45.CrossRefGoogle Scholar
  25. 25.
    Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124:1589–99.CrossRefGoogle Scholar
  26. 26.
    Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology. 2019;126:980–8.CrossRefGoogle Scholar
  27. 27.
    Iwasaki M, Inomata H. Relation between superficial capillaries and foveal structures in the human retina. Investig Ophthalmol Vis Sci. 1986;27:1698–705.Google Scholar
  28. 28.
    Rutkowski P, May CA. Nutrition and vascular supply of retinal ganglion cells during human development. Front Neurol. 2016;7:49.CrossRefGoogle Scholar
  29. 29.
    De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–56.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2019

Authors and Affiliations

  • Nozomu Uchida
    • 1
    • 2
  • Kyoko Ishida
    • 2
    Email author
  • Ayako Anraku
    • 2
  • Asuka Takeyama
    • 2
    • 3
  • Goji Tomita
    • 2
  1. 1.Department of OphthalmologyToho University Graduate School of MedicineTokyoJapan
  2. 2.Department of OphthalmologyToho University Ohashi Medical CenterTokyoJapan
  3. 3.Department of OphthalmologyTeikyo University School of Medicine, University Hospital MizonokuchiKawasakiJapan

Personalised recommendations