Efficacy and safety of intravitreal drug injections using a short 34-gauge needle

  • Hirofumi Sasajima
  • Kotaro TsuboiEmail author
  • Kenta Murotani
  • Motohiro Kamei
Clinical Investigation



To evaluate the efficacy and safety of intravitreal drug injections using a short 34-gauge needle.

Study design

Retrospective study.


This study included patients with age-related macular degeneration, diabetic macular edema, or macular edema associated with retinal vein occlusion. We reviewed the medical records of consecutive patients with one of those three diseases treated with antivascular endothelial growth factor (VEGF) agents using an 8-mm-long 34-gauge needle. Sustained intraocular pressure (IOP) elevations were defined as IOP exceeding 21 mmHg or 6-mmHg or higher increases from baseline on 2 consecutive visits at least 1 month apart. The main outcome measures were improved best-corrected visual acuity (BCVA), central retinal thickness (CRT), IOP changes, and incidence of complications related to the 34-gauge needle.


Six hundred ninety-eight injections were administered to 243 consecutive patients (mean age, 74.0 years) and reviewed. The mean follow-up time was 30.2 ± 15.9 weeks. The mean number of intravitreal injections/eye was 2.7 ± 1.8 (range, 1–9). The mean BCVA improved significantly (P < .0001), from 0.43 ± 0.4 logarithm of the minimum angle of resolution (logMAR) units at baseline to 0.36 ± 0.41 logMAR units at the last visit. The mean CRT decreased significantly (P < .0001), from 426.9 ± 168.5 microns at baseline to 297.6 ± 121.1 microns at the last visit. The mean IOP decreased significantly (P < .0001), from 13.6 ± 3.0 mmHg at baseline to 12.9 ± 3.1 mmHg at the visit after the first injection. A retinal tear occurred in 0.14%/injection (1/698). A sustained IOP elevation occurred in 1.29%/injection (9/698).


Despite a few complications, the short 34-gauge needle was efficacious and safe for anti-VEGF intravitreal injections.


Intraocular pressure Intravitreal injection Short 34-gauge needle Vascular endothelial growth factor 



The authors have no proprietary or commercial interest in any materials mentioned in this report.

Conflicts of interest

H. Sasajima, None; K. Tsuboi, None; K. Murotani, None; M. Kamei, Grants (HOYA, Abbott, Novartis, Pfizer, HANDAYA, TOMEY, Kowa, Santen, Senju, Otsuka, Alcon).


  1. 1.
    Aiello LP, Brucker AJ, Chang S, Cunningham ET Jr, D’Amico DJ, Flynn HW Jr, et al. Evolving guidelines for intravitreous injections. Retina. 2004;24:S3–19.CrossRefGoogle Scholar
  2. 2.
    Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29:875–912.CrossRefGoogle Scholar
  3. 3.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.CrossRefGoogle Scholar
  4. 4.
    Regillo CD, Brown DM, Abraham P, Yue H, Ianchulev T, Schneider S, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 1. Am J Ophthalmol. 2008;145:239–48.CrossRefGoogle Scholar
  5. 5.
    Singer MA, Awh CC, Sadda S, Freeman WR, Antoszyk AN, Wong P, et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 2012;119:1175–83.CrossRefGoogle Scholar
  6. 6.
    Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, Brown DM, Chong V, Nguyen QD, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121:193–201.CrossRefGoogle Scholar
  7. 7.
    Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, Quhill F, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology. 2010;117:1078–86.CrossRefGoogle Scholar
  8. 8.
    Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118:615–25.CrossRefGoogle Scholar
  9. 9.
    Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118:2041–9.CrossRefGoogle Scholar
  10. 10.
    Varma R, Bressler NM, Suñer I, Lee P, Dolan CM, Ward J, et al. Improved vision-related function after ranibizumab for macular edema after retinal vein occlusion: results from the BRAVO and CRUISE trials. Ophthalmology. 2012;119:2108–18.CrossRefGoogle Scholar
  11. 11.
    Jager RD, Aiello LP, Patel SC, Cunningham ET Jr. Risks of intravitreous injection: a comprehensive review. Retina. 2004;24:676–98.CrossRefGoogle Scholar
  12. 12.
    Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27:787–94.CrossRefGoogle Scholar
  13. 13.
    Meyer CH, Rodrigues EB, Michels S, Mennel S, Schmidt JC, Helb HM, et al. Incidence of damage to the crystalline lens during intravitreal injections. J Ocul Pharmacol Ther. 2010;26:491–5.CrossRefGoogle Scholar
  14. 14.
    Georgopoulos M, Polak K, Prager F, Prünte C, Schmidt-Erfurth U. Characteristics of severe intraocular inflammation following intravitreal injection of bevacizumab (Avastin). Br J Ophthalmol. 2009;93:457–62.CrossRefGoogle Scholar
  15. 15.
    Kim JE, Mantravadi AV, Hur EY, Covert DJ. Short-term intraocular pressure changes immediately after intravitreal injections of anti-vascular endothelial growth factor agents. Am J Ophthalmol. 2008;146:930–4.CrossRefGoogle Scholar
  16. 16.
    Good TJ, Kimura AE, Mandava N, Kahook MY. Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol. 2011;95:1111–4.CrossRefGoogle Scholar
  17. 17.
    Hoang QV, Mendonca LS, Della Torre KE, Jung JJ, Tsuang AJ, Freund KB. Effect on intraocular pressure in patients receiving unilateral intravitreal anti-vascular endothelial growth factor injections. Ophthalmology. 2012;119:321–6.CrossRefGoogle Scholar
  18. 18.
    Wehrli SJ, Tawse K, Levin MH, Zaidi A, Pistilli M, Brucker AJ. A lack of delayed intraocular pressure elevation in patients treated with intravitreal injection of bevacizumab and ranibizumab. Retina. 2012;32:1295–301.CrossRefGoogle Scholar
  19. 19.
    Meyer CH, Michels S, Rodrigues EB, Hager A, Mennel S, Schmidt JC, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 2011;89:70–5.CrossRefGoogle Scholar
  20. 20.
    Mason JO 3rd, White MF, Feist RM, Thomley ML, Albert MA, Persaud TO, et al. Incidence of acute onset endophthalmitis following intravitreal bevacizumab (Avastin) injection. Retina. 2008;28:564–7.CrossRefGoogle Scholar
  21. 21.
    McCannel CA. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina. 2011;31:654–61.CrossRefGoogle Scholar
  22. 22.
    Shah CP, Garg SJ, Vander JF, Brown GC, Kaiser RS, Haller JA. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmology. 2011;118:2028–34.CrossRefGoogle Scholar
  23. 23.
    Meredith TA, McCannel CA, Barr C, Doft BH, Peskin E, Maguire MG, et al. Postinjection endophthalmitis in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2015;122:817–21.CrossRefGoogle Scholar
  24. 24.
    Hubschman JP, Coffee RE, Bourges JL, Yu F, Schwartz SD. Experimental model of intravitreal injection techniques. Retina. 2010;30:167–73.CrossRefGoogle Scholar
  25. 25.
    De Stefano VS, Abechain JJ, de Almeida LF, Verginassi DM, Rodrigues EB, Freymuller E, et al. Experimental investigation of needles, syringes and techniques for intravitreal injections. Clin Exp Ophthalmol. 2011;39:236–42.CrossRefGoogle Scholar
  26. 26.
    Avery RL, Bakri SJ, Blumenkranz MS, Brucker AJ, Cunningham ET Jr, D’Amico DJ, et al. Intravitreal injection technique and monitoring: updated guidelines of an expert panel. Retina. 2014;34:S1–18.CrossRefGoogle Scholar
  27. 27.
    Sasajima H, Tsuboi K, Ono H, Murotani K, Kamei M. A randomized trial of a short 34-gauge needle for intravitreal injections. Ophthalmology. 2018;125:947–8.CrossRefGoogle Scholar
  28. 28.
    Boyer D, Heier J, Brown DM, Clark WL, Vitti R, Berliner AJ, et al. Vascular endothelial growth factor Trap-Eye for macular edema secondary to central vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012;119:1024–32.CrossRefGoogle Scholar
  29. 29.
    Oztas Z, Akkin C, Afrashi F, Nalcaci S. The short-needle intravitreal injection technique. Int J Ophthalmol. 2016;9:929–30.Google Scholar
  30. 30.
    Wu L, Martínez-Castellanos MA, Quiroz-Mercado H, Arevalo JF, Berrocal MH, Farah ME, et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2008;246:81–7.CrossRefGoogle Scholar
  31. 31.
    Atchison EA, Wood KM, Mattox CG, Barry CN, Lum F, MacCumber MW. The real-world effect of intravitreous anti-vascular endothelial growth factor drugs on intraocular pressure: an analysis using the IRIS registry. Ophthalmology. 2018;125:676–82.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2019

Authors and Affiliations

  • Hirofumi Sasajima
    • 1
  • Kotaro Tsuboi
    • 1
    Email author
  • Kenta Murotani
    • 2
  • Motohiro Kamei
    • 1
  1. 1.Department of OphthalmologyAichi Medical UniversityNagakuteJapan
  2. 2.Biostatistics Center, Graduate School of MedicineKurume UniversityFukuokaJapan

Personalised recommendations