Advertisement

Japanese Journal of Ophthalmology

, Volume 62, Issue 6, pp 643–651 | Cite as

Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning

  • Hideki Shiihara
  • Shozo Sonoda
  • Hiroto Terasaki
  • Naoko Kakiuchi
  • Yuki Shinohara
  • Masatoshi Tomita
  • Taiji Sakamoto
Clinical Investigation
  • 123 Downloads

Abstract

Purpose

To develop an automated method to segment the choroidal layers of en face optical coherent tomography (OCT) images by machine learning.

Study design

A cross-sectional, prospective study of 276 eyes of 181 healthy subjects.

Methods

OCT en face images of the choroid were obtained every 2.6 μm from the retinal pigment epithelium (RPE) to the chorioscleral border. The images at the start of the choriocapillaris, start of Sattler’s layer, and start of Haller’s layer were identified, and the image numbers from the RPE line were taken as the teacher data. Forty-one feature quantities of each image were extracted. A support vector machine (SVM) model was created from each feature value of the training data, and a coefficient of determination was calculated for each layer of the choroid by a fivefold cross validation. Next, the same evaluation was performed after creating a SVM model with selected effective feature quantities.

Results

The mean coefficient of determination using all features was 0.9853 ± 0.0012. Nine effective feature quantities (relative choroid thickness, mean/kurtosis/variance of brightness, FFT_ skewness, k0_vessel width, k1/k2/k4_vessel area) were selected, and the mean of the coefficient of determinations with these quantities In this model was 0.9865 ± 0.0001. The number of errors in the image number at the start of each layer was 1.01 ± 0.79 for the choriocapillaris, 1.13 ± 1.12 for Sattler’s layer, and 3.77 ± 2.90 for Haller’s layer.

Conclusion

Automated stratification of the choroid in en face images can be done with high accuracy through machine learning.

Keywords

En face OCT Choroid Machine learning Support vector machine 

Notes

Acknowledgements

The authors thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute of the University of Miami for providing critical discussions and suggestions to our study and revision of the final manuscript. We also thank Mr. Eiichi Yoshimoto and Mr. Hiroshi Kiyota of Chinou Jouhou Shisutemu Inc. for technical assistance, and Dr. Masahiro Akiba of TOPCON corporation for valuable discussion. This study was supported by JSPS KAKENHI Grant number 15H04996.

Conflicts of interest

H Shiihara, None; S. Sonoda, None; H. Terasaki, None; N. Kakiuchi, None; Y. Shinohara, None; M. Tomita, None; T. Sakamoto, None.

References

  1. 1.
    Castro-Correia J. Understanding the choroid. Int Ophthalmol. 1995;19:135–47.CrossRefGoogle Scholar
  2. 2.
    Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.CrossRefGoogle Scholar
  3. 3.
    Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Kapoor K, et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010;51:5260–6.CrossRefGoogle Scholar
  4. 4.
    Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.CrossRefGoogle Scholar
  5. 5.
    Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29.CrossRefGoogle Scholar
  6. 6.
    Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S. Subfoveal choroidal thickness after ranibizumab therapy for neovascular age-related macular degeneration: 12-month results. Ophthalmology. 2012;119:1621–7.CrossRefGoogle Scholar
  7. 7.
    Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T. Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol. 2016;60:35–41.CrossRefGoogle Scholar
  8. 8.
    Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159(1123–31):e1.Google Scholar
  9. 9.
    Sonoda S, Sakamoto T, Otsuka H, Yoshinaga N, Yamashita T, Ki IY, et al. Responsiveness of eyes with polypoidal choroidal vasculopathy with choroidal hyperpermeability to intravitreal ranibizumab. BMC Ophthalmol. 2013;13:43.CrossRefGoogle Scholar
  10. 10.
    Egawa M, Mitamura Y, Sano H, Akaiwa K, Niki M, Semba K, et al. Changes of choroidal structure after treatment for primary intraocular lymphoma: retrospective, observational case series. BMC Ophthalmol. 2015;15:136.CrossRefGoogle Scholar
  11. 11.
    Egawa M, Mitamura Y, Akaiwa K, Semba K, Kinoshita T, Uchino E, et al. Changes of choroidal structure after corticosteroid treatment in eyes with Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2016;100:1646–50.CrossRefGoogle Scholar
  12. 12.
    Kawano H, Sonoda S, Saito S, Terasaki H, Sakamoto T. Choroidal structure altered by degeneration of retina in eyes with retinitis pigmentosa. Retina. 2017;37:2175–82.CrossRefGoogle Scholar
  13. 13.
    Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1901–8.CrossRefGoogle Scholar
  14. 14.
    Sonoda S, Sakamoto T, Kuroiwa N, Arimura N, Kawano H, Yoshihara N, et al. Structural changes of inner and outer choroid in central serous chorioretinopathy determined by optical coherence tomography. PLoS One. 2016;11:e0157190.CrossRefGoogle Scholar
  15. 15.
    Kinoshita T, Mitamura Y, Mori T, Akaiwa K, Semba K, Egawa M, et al. Changes in choroidal structures in eyes with chronic central serous chorioretinopathy after half-dose photodynamic therapy. PLoS One. 2016;11:e0163104.CrossRefGoogle Scholar
  16. 16.
    Sohrab M, Wu K, Fawzi AA. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One. 2012;7:e48631.CrossRefGoogle Scholar
  17. 17.
    Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Kumase F, Shiode Y, et al. Factors affecting choroidal vascular density in normal eyes: quantification using en face swept-source optical coherence tomography. Am J Ophthalmol. 2016;170:1–9.CrossRefGoogle Scholar
  18. 18.
    Kuroda Y, Ooto S, Yamashiro K, Oishi A, Nakanishi H, Tamura H, et al. Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol. 2016;169:199–207.CrossRefGoogle Scholar
  19. 19.
    Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina. 2018;2:152–61.CrossRefGoogle Scholar
  20. 20.
    Savastano MC, Rispoli M, Savastano A, Lumbroso B. En face optical coherence tomography for visualization of the choroid. Ophthal Surg Lasers Imaging Retina. 2015;46:561–5.CrossRefGoogle Scholar
  21. 21.
    Savastano MC, Dansingani KK, Rispoli M, Virgili G, Savastano A, Freund KB, et al. Classification of haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face optical coherence tomography. Retina. 2018;38:1211–5.CrossRefGoogle Scholar
  22. 22.
    Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, et al. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Exp. 2013;4:1133–52.CrossRefGoogle Scholar
  23. 23.
    Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRefGoogle Scholar
  24. 24.
    Zhang T, Suen CY. A fast parallel algorithm for thinning digital patterns. Commun ACM. 1984;27:236–9.CrossRefGoogle Scholar
  25. 25.
    Tanabe K, Kurita T, Nishida K, Lucic B, Amic D, Suzuki T. Improvement of carcinogenicity prediction performances based on sensitivity analysis in variable selection of SVM models. SAR QSAR Environ Res. 2013;24:565–80.CrossRefGoogle Scholar
  26. 26.
    Murakami T, Uji A, Suzuma K, Dodo Y, Yoshitake S, Ghashut R, et al. In vivo choroidal vascular lesions in diabetes on swept-source optical coherence tomography. PLoS One. 2016;11:e0160317.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  • Hideki Shiihara
    • 1
  • Shozo Sonoda
    • 1
  • Hiroto Terasaki
    • 1
  • Naoko Kakiuchi
    • 1
  • Yuki Shinohara
    • 1
  • Masatoshi Tomita
    • 1
  • Taiji Sakamoto
    • 1
  1. 1.Department of OphthalmologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan

Personalised recommendations