Advertisement

Japanese Journal of Ophthalmology

, Volume 62, Issue 6, pp 634–642 | Cite as

Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma

  • Suresh Subramaniam
  • Jin Wook Jeoung
  • Won June Lee
  • Young Kook Kim
  • Ki Ho ParkEmail author
Clinical Investigation
  • 118 Downloads

Abstract

Purpose

To compare the diagnostic capability of three-dimensional (3D) neuro-retinal rim thickness (NRR) with existing optic nerve head and retinal nerve fiber layer (RNFL) scan parameters using high-definition optical coherence tomography (HD-OCT).

Design

Retrospective study.

Methods

Based on the mean deviation (MD) of the Humphrey Field Analyzer (HFA), the 152 subjects were categorized into mild (MD > − 6 dB, 100), moderate (MD − 6 to − 12 dB, 26), and severe (MD < − 12 dB, 26) glaucoma. The HD-OCT values of NRR, RNFL and ganglion cell inner plexiform layer (GCIPL) thicknesses, along with those of other parameters (rim area, disc area) were obtained, and the average NRR thickness was calculated.

Results

For all of the HD-OCT parameters, RNFL thickness showed a higher area under the ROC (AUROC) curve (range: 0.937–1.000) than did NRR thickness (range: 0.827–1.000). There were significant RNFL, NRR, and GCIPL AUROC curve differences among the mild, moderate and severe glaucoma groups. RNFL thickness for mild glaucoma showed a significantly larger area than did NRR thickness [area difference: 0.110 (± 0.025); p value < 0.0001). Furthermore, RNFL relative to NRR thickness yielded higher sensitivity (85–100% vs. 72–100%) and specificity (89–100% vs. 84–100%) for diagnosis of glaucoma.

Conclusion

RNFL thickness remains significantly better than 3D NRR thickness in terms of glaucoma-diagnostic capability in HD-OCT.

Keywords

Unilateral open-angle glaucoma High-definition optical coherence tomography End point of Bruch`s membrane Vitreo-retinal interface Three-dimensional neuro-retinal rim thickness mapping 

Notes

Acknowledgements

We thank Dr. Yong Woo Kim from SNUH for his assistance and contribution in this research work.

Conflicts of interest

S. Subramaniam, None; J. W. Jeoung, None; W. J. Lee, None; Y. K. Kim, None; K. H. Park, None.

References

  1. 1.
    Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmol. 2014;121:2081–90.CrossRefGoogle Scholar
  2. 2.
    W.H.O. Priority eye diseases. http://www.who.int/blindness/causes/priority/en/index6.html. Accessed 27 July 2016.
  3. 3.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.CrossRefGoogle Scholar
  4. 4.
    Patanakanog S, Chen TC. Imaging modality in diagnosis and monitoring of glaucoma: spectral domain optical coherence tomography. Curr Ophthalmol Rep. 2016;4:173–9.CrossRefGoogle Scholar
  5. 5.
    Fortune B, Hardin C, Reynaud J, Cull G, Yang H, Wang L, et al. Comparing optic nerve head rim width, rim area, and peripapillary retinal nerve fiber layer thickness to axon count in experimental glaucoma. Invest Ophthalmol Vis Sci. 2016;57:OCT404–12.CrossRefGoogle Scholar
  6. 6.
    Gardiner SK, Fortune B, Demirel S. Localized changes in retinal nerve fiber layer thickness as a predictor of localized functional change in glaucoma. Am J Ophthalmol. 2016;170:75–82.CrossRefGoogle Scholar
  7. 7.
    Danthurebandara VM, Vianna JR, Sharpe GP, Hutchison DM, Belliveau AC, Shuba LM, et al. Diagnostic accuracy of glaucoma with sector-based and a new total profile-based analysis of neuroretinal rim and retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci. 2016;57:181–7.CrossRefGoogle Scholar
  8. 8.
    Dharwadkar S, Nayak B. Optical coherence tomography in glaucoma-I. J Clin Ophthalmol Res. 2017;5:51–63.CrossRefGoogle Scholar
  9. 9.
    Wang B, Wollstein G, Schuman JS. Optic nerve: optical coherence tomography. In: Giaconi JA, Law SK, Nouri-Mahdavi K, Coleman AL, Caprioli J, editors. Pearls of glaucoma management. Berlin, Heidelberg: Springer; 2016. p. 51–61.CrossRefGoogle Scholar
  10. 10.
    Schuman JS, Wollstein G, Farra T, Hertzmark E, Aydin A, Fujimoto JG, et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 2003;135:504–12.CrossRefGoogle Scholar
  11. 11.
    Hwang YH, Kim MK, Ahn SI. Consistency of bruch membrane opening detection as determined by optical coherence tomography. J Glaucoma. 2016;25:873–8.CrossRefGoogle Scholar
  12. 12.
    Rhodes LA, Huisingh CE, Quinn AE, McGwin G Jr, LaRussa F, Box D, et al. Comparison of Bruch’s membrane opening minimum rim width among those with normal ocular health by race. Am J Ophthalmol. 2017;174:113–8.CrossRefGoogle Scholar
  13. 13.
    Toshev AP, Lamparter J, Pfeiffer N, Hoffmann EM. Bruch’s membrane opening-minimum rim width assessment with spectral-domain optical coherence tomography performs better than confocal scanning laser ophthalmoscopy in discriminating early glaucoma patients from control subjects. J Glaucoma. 2017;26:27–33.CrossRefGoogle Scholar
  14. 14.
    Belghith A, Bowd C, Medeiros FA, Hammel N, Yang Z, Weinreb RN, et al. Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego Automated Layer Segmentation Algorithm (SALSA). Invest Ophthalmol Vis Sci. 2016;57:675–82.CrossRefGoogle Scholar
  15. 15.
    Reis AS, O’Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci. 2012;53:1852–60.CrossRefGoogle Scholar
  16. 16.
    Chauhan BC, O’Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmol. 2013;120:535–43.CrossRefGoogle Scholar
  17. 17.
    Mwanza J-C, Oakley JD, Budenz DL, Anderson DR. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmol. 2011;118(241–8):e1.Google Scholar
  18. 18.
    Pollet-Villard F, Chiquet C, Romanet J-P, Noel C, Aptel F. Structure–function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci. 2014;55:2953–62.CrossRefGoogle Scholar
  19. 19.
    Everett MJ, OAKLEY JD. Automated analysis of the optic nerve head: measurements, methods and representations. Google Patents; 2015.Google Scholar
  20. 20.
    Anderson DR, Patella VM. Automated static perimetry. Maryland Heights: Mosby; 1999. p. 152–3.Google Scholar
  21. 21.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefGoogle Scholar
  22. 22.
    Gordon MO, Beiser JA, Brandt JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–20.CrossRefGoogle Scholar
  23. 23.
    Caprioli J, Miller JM, Sears M. Quantitative evaluation of the optic nerve head in patients with unilateral visual field loss from primary open-angle glaucoma. Ophthalmol. 1987;94:1484–7.CrossRefGoogle Scholar
  24. 24.
    Gmeiner JMD, Schrems WA, Mardin CY, Laemmer R, Kruse FE, Schrems-Hoesl LM. Comparison of Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment. Invest Ophthalmol Vis Sci. 2016;57:575–84.CrossRefGoogle Scholar
  25. 25.
    Enders P, Adler W, Schaub F, Hermann MM, Dietlein T, Cursiefen C, et al. Novel Bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6596–603.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  • Suresh Subramaniam
    • 1
    • 2
  • Jin Wook Jeoung
    • 1
  • Won June Lee
    • 1
  • Young Kook Kim
    • 1
  • Ki Ho Park
    • 1
    Email author
  1. 1.Department of OphthalmologySeoul National University HospitalSeoulRepublic of Korea
  2. 2.Department of OphthalmologyHospital Sultanah BahiyahAlor StarMalaysia

Personalised recommendations