Advertisement

Reproducibility and reliability of retinal and optic disc measurements obtained with swept-source optical coherence tomography in a healthy population

  • Maria SatueEmail author
  • Alicia Gavin
  • Elvira Orduna
  • Elisa Vilades
  • Maria Jesus Rodrigo
  • Javier Obis
  • Vicente Polo
  • Jose Manuel Larrosa
  • Luis Emilio Pablo
  • Elena Garcia-Martin
Clinical Investigation

Abstract

Purpose

To analyze the reproducibility of macular and peripapillary thickness measurements, and optic nerve morphometric data obtained with Triton Optical coherence tomography (OCT) in a healthy population.

Study design

Observational cross sectional study.

Material and methods

A total of 108 eyes underwent evaluation using the Triton Swept Source-OCT. A wide protocol was used and measurements in each eye were repeated three times. Morphometric data of the optic nerve head, full macular thickness, ganglion cell layer (GCL) and retinal nerve fiber layer thickness (RNFL) were analyzed. For each parameter, the coefficient of variation (COV) and the intra-class (ICC) correlation values were calculated.

Results

Measurements were highly reproducible for all morphometric measurements of the optic disc, with a mean COV of 6.36%. Macular full thickness showed good COV and ICC coefficients, with a mean COV value of 1.00%. Macular GCL thickness showed a mean COV value of 3.06%, and ICC higher than 0.787. Peripapillary RNFL thickness showed good COV and ICC coefficients, with a mean COV value of 8.31% and ICC higher than 0.684. The inferotemporal sector showed the lowest ICC (0.685).

Conclusions

Triton OCT presents good reproducibility values in measurements corresponding to retinal parameters, with macular measurements showing the highest reproducibility rates. Peripapillary RNFL measurements should be evaluated with caution.

Keywords

Coefficient of variation Reproducibility Swept source Optical coherence tomography 

Notes

Conflicts of interest

M. Satue, None; A. Gavin, None; E. Orduna, None; E. Vilades, None; M. J. Rodrigo, None; J. Obis, None; V. Polo, None; J. M. Larrosa, None; L. E. Pablo, None; E. G. -Martin, None.

References

  1. 1.
    Keane PA, Balaskas K, Sim DA, Aman K, Denniston AK, Aslam T, et al. Automated analysis of vitreous inflammation using spectral-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4:4.CrossRefGoogle Scholar
  2. 2.
    Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.CrossRefGoogle Scholar
  3. 3.
    Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:663–8.CrossRefGoogle Scholar
  4. 4.
    Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005;46:2440–3.CrossRefGoogle Scholar
  5. 5.
    Garcia-Martin E, Pueyo V, Ara J, Almarcegui C, Martin J, Pablo L, et al. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients. Mult Scler. 2011;17:830–7.CrossRefGoogle Scholar
  6. 6.
    Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73:302–8.CrossRefGoogle Scholar
  7. 7.
    Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69:1603–9.CrossRefGoogle Scholar
  8. 8.
    Garcia-Martin E, Pueyo V, Martin J, Almarcegui C, Ara JR, Dolz I, et al. Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis. Eur J Ophthalmol. 2010;20:167–73.CrossRefGoogle Scholar
  9. 9.
    Garcia-Martin E, Pablo LE, Herrero R, Satue M, Polo V, Larrosa JM, et al. Diagnostic ability of a linear discriminant function for spectral domain optical coherence tomography in multiple sclerosis patients. Ophthalmology. 2012;119:1705–11.CrossRefGoogle Scholar
  10. 10.
    Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, et al. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol. 2014;98(3):350–5.CrossRefGoogle Scholar
  11. 11.
    Polo V, Satue M, Rodrigo MJ, Otin S, Alarcia R, Bambo MP, et al. Visual dysfunction and its correlation with retinal changes in patients with Parkinson’s disease: an observational cross-sectional study. BMJ Open. 2016;6(5):e009658.CrossRefGoogle Scholar
  12. 12.
    Larrosa JM, Garcia-Martin E, Bambo MP, Pinilla J, Polo V, Otin S, et al. Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for Fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:3043–51.CrossRefGoogle Scholar
  13. 13.
    Polo V, Garcia-Martin E, Bambo MP, Pinilla J, Larrosa JM, Satue M, et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye (Lond). 2014;28:680–90.CrossRefGoogle Scholar
  14. 14.
    Vizzeri G, Balasubramanian M, Bowd C, Weinreb RN, Medeiros FA, Zangwill LM. Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Opt Express. 2009;17:4004–18.CrossRefGoogle Scholar
  15. 15.
    Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, Martin J, Fernandez J. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci. 2011;52:4124–31.CrossRefGoogle Scholar
  16. 16.
    Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology. 2012;119:2161–7.CrossRefGoogle Scholar
  17. 17.
    Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4971–8.CrossRefGoogle Scholar
  18. 18.
    Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol. 2014;98:334–8.CrossRefGoogle Scholar
  19. 19.
    De-Pablo-Gómez-de-Liaño L, Fernández-Vigo JI, Ventura-Abreu N, García-Feijóo J, Fernández-Vigo JÁ, Gómez-de-Liaño R. Agreement between three optical coherence tomography devices to assess the insertion distance and thickness of horizontal rectus muscles. J Pediatr Ophthalmol Strabismus. 2017;54:168–76.CrossRefGoogle Scholar
  20. 20.
    Bahrami B, Ewe SYP, Hong T, Zhu M, Ong G, Luo K, et al. Influence of retinal pathology on the reliability of macular thickness measurement: a comparison between optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina. 2017;48:319–25.CrossRefGoogle Scholar
  21. 21.
    Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report No. 1. Arch Ophthalmol. 1985;103:1796–806.CrossRefGoogle Scholar
  22. 22.
    Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT—a devices. PLoS One. 2017;12:e0177059.CrossRefGoogle Scholar
  23. 23.
    Garcia-Martin E, Polo V, Larrosa JM, Marques ML, Herrero R, Martin J, et al. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology. 2014;121(2):573–9.CrossRefGoogle Scholar
  24. 24.
    Garcia-Martin E, Ara JR, Martin J, Almarcegui C, Dolz I, Vilades E, et al. Retinal and optic nerve degeneration in patients with multiple sclerosis followed up for 5 years. Ophthalmology. 2017;124:688–96.CrossRefGoogle Scholar
  25. 25.
    Satue M, Obis J, Alarcia R, Orduna E, Rodrigo MJ, Vilades E, et al. Retinal and choroidal changes in patients with Parkinson’s disease detected by Swept Source Optical coherence tomography. Curr Eye Res. 2018;43:109–15.CrossRefGoogle Scholar
  26. 26.
    Çetinkaya E, Duman R, Duman R, Sabaner MC. Repeatability and reproducibility of automatic segmentation of retinal layers in healthy subjects using Spectralis optical coherence tomography. Arq Bras Oftalmol. 2017;80:78–381.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2019

Authors and Affiliations

  • Maria Satue
    • 1
    • 2
    Email author
  • Alicia Gavin
    • 1
    • 2
  • Elvira Orduna
    • 1
  • Elisa Vilades
    • 1
    • 2
  • Maria Jesus Rodrigo
    • 1
    • 2
  • Javier Obis
    • 1
    • 2
  • Vicente Polo
    • 1
    • 2
  • Jose Manuel Larrosa
    • 1
    • 2
  • Luis Emilio Pablo
    • 1
    • 2
  • Elena Garcia-Martin
    • 1
    • 2
  1. 1.Ophthalmology DepartmentMiguel Servet University HospitalZaragozaSpain
  2. 2.Aragon Institute for Health Research (IIS Aragón), Miguel Servet Ophthalmology Innovative and Research Group (GIMSO)ZaragozaSpain

Personalised recommendations