Japanese Journal of Ophthalmology

, Volume 61, Issue 6, pp 479–483 | Cite as

Concentration of acute phase factors in vitreous fluid in diabetic macular edema

  • Kazuhiro KimuraEmail author
  • Tomoko Orita
  • Yuka Kobayashi
  • Shigeo Matsuyama
  • Kazushi Fujimoto
  • Kazuhiko Yamauchi
Clinical Investigation



Diabetic retinal maculopathy is associated with acute and chronic local inflammation. We measured the concentrations of acute phase factors in vitreous fluid of patients with diabetic macular edema (DME) and examined their relations to visual acuity and central retinal thickness (CRT) both before and after vitrectomy.

Study design



Vitreous fluid was collected during vitreoretinal surgery from 19 patients with DME and 12 control subjects with epiretinal membrane. The concentrations of acute phase factors (α2-macroglobulin, haptoglobin, C-reactive protein, serum amyloid P and A, procalcitonin, ferritin, tissue plasminogen activator, fibrinogen) and vascular endothelial growth factor (VEGF) were measured with multiplex assays. CRT of macular edema was measured by optical coherence tomography (OCT).


The levels of serum amyloid P, procalcitonin, ferritin, and fibrinogen in vitreous fluid were increased in DME patients compared with control subjects. The levels of procalcitonin and fibrinogen in DME patients were inversely correlated with visual acuity both before and 3 months after vitrectomy but not 6 months postsurgery. The concentrations of these four factors were not correlated with either CRT or the vitreous levels of VEGF in DME patients.


Acute phase factors may contribute to local inflammation in DME and may therefore influence disease progression.


Acute phase factor Diabetic macular edema Visual acuity Central retinal thickness Vascular endothelial growth factor (VEGF) 



We thank Yukari Mizuno and Shizuka Murata for technical assistance as well as members of the Setouchi Vitreous Club for support.

Conflicts of interest

K. Kimura, None; T. Orita, None; Y. Kobayashi, None; S. Matsuyama, None; K. Fujimoto, None; K. Yamauchi, None.


  1. 1.
    Das A, McGuire PG, Rangasamy S. Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology. 2015;122:1375–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Willard AL, Herman IM. Vascular complications and diabetes: current therapies and future challenges. J Ophthalmol. 2012;2012:209538.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009;116:73–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Noma H, Mimura T, Yasuda K, Shimura M. Role of inflammation in diabetic macular edema. Ophthalmologica. 2014;232:127–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Herpers BL, Endeman H, de Jong BA, de Jongh BM, Grutters JC, Biesma DH, et al. Acute-phase responsiveness of mannose-binding lectin in community-acquired pneumonia is highly dependent upon MBL2 genotypes. Clin Exp Immunol. 2009;156:488–94.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 1999;13:273–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Lentsch AB, Ward PA. Regulation of inflammatory vascular damage. J Pathol. 2000;190:343–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Khazaei M. Acute phase reactant dynamics and incidence of microvascular dysfunctions in type 2 diabetes mellitus. J Res Med Sci. 2011;16:1634–5.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Camós S, Gubern C, Sobrado M, Rodríguez R, Romera VG, Moro MA, et al. The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins. Neuroscience. 2014;269:112–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB. Molecular mechanisms of diabetic retinopathy: potential therapeutic targets. Middle East Afr J Ophthalmol. 2015;22:135–44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 2001;14:475–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4:e8158.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Badolato R, Oppenheim JJ. Role of cytokines, acute-phase proteins, and chemokines in the progression of rheumatoid arthritis. Semin Arthritis Rheum. 1996;26:526–38.CrossRefPubMedGoogle Scholar
  14. 14.
    Santoro A, Mancini E. Cardiac effects of chronic inflammation in dialysis patients. Nephrol Dial Transplant. 2002;17:10–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99:3505–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Ma Y, Tao Y, Lu Q, Jiang YR. Intraocular expression of serum amyloid A and interleukin-6 in proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152:678–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Kocabora MS, Telli ME, Fazil K, Erdur SK, Ozsutcu M, Cekic O, et al. Serum and aqueous concentrations of inflammatory markers in diabetic macular edema. Ocul Immunol Inflamm. 2016;24:549–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Thornit DN, Vinten CM, Sander B, Lund-Andersen H, la Cour M. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol. Invest Ophthalmol Vis Sci. 2010;51:2827–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.CrossRefPubMedGoogle Scholar
  20. 20.
    Serizawa S, Ohkoshi K, Minowa Y, Takahashi O. Prognosis of patients with diabetic macular edema before Japanese approval of anti-vascular endothelial growth factor. Jpn J Ophthalmol. 2015;59:244–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Ogura Y, Shiraga F, Terasaki H, Ohji M, Ishida S, Sakamoto T, et al. Clinical practice pattern in management of diabetic macular edema in Japan: survey results of Japanese retinal specialists. Jpn J Ophthalmol. 2017;61:43–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Gardner TW, Antonetti DA. Novel potential mechanisms for diabetic macular edema: leveraging new investigational approaches. Curr Diab Rep. 2008;8:263–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Ma JX, Zhang SX, Wang JJ. Down-regulation of angiogenic inhibitors: a potential pathogenic mechanism for diabetic complications. Curr Diabetes Rev. 2005;1:183–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Sohn HJ, Han DH, Kim IT, Oh IK, Kim KH, Lee DY, et al. Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. Am J Ophthalmol. 2011;152:686–94.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2017

Authors and Affiliations

  • Kazuhiro Kimura
    • 1
    Email author
  • Tomoko Orita
    • 1
  • Yuka Kobayashi
    • 1
  • Shigeo Matsuyama
    • 2
  • Kazushi Fujimoto
    • 3
  • Kazuhiko Yamauchi
    • 4
  1. 1.Department of OphthalmologyYamaguchi University Graduate School of MedicineUbeJapan
  2. 2.Jyousaigaoka Eye ClinicFukuokaJapan
  3. 3.Fujimoto Eye ClinicKitakyushuJapan
  4. 4.Department of OphthalmologyJapanese Red Cross Yamaguchi HospitalYamaguchiJapan

Personalised recommendations