Skip to main content

Advertisement

Log in

Evaluation of kinetic programs in various automated perimeters

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Kinetic programs in four automated perimeters were evaluated and compared for their clinical usefulness using four simulated visual field (VF) patterns.

Methods

Using the results of conventional Goldmann manual kinetic perimetry (MKP), simulated fields with concentric contraction, a temporal residual island only, a small central island with a temporal island, and a ring scotoma were created. Four kinetic programs, Humphrey 750i Kinetic Test (Humphrey), OCULUS Twinfield 2 Kinetic Perimetry (OCULUS), OCTOPUS 900 Goldmann Kinetic Perimetry (OCTOPUS GKP), and Kowa AP-7000 Isopter (Kowa) were tested by the 4 simulated defect patterns using stimuli of V/4e, I/4e, I/3e, I/2e, and I/1e at speeds of 3 and 5°/s.

Results

Except Humphrey, OCULUS, OCTOPUS GKP, and Kowa could obtain isopters nearly comparable to those of Goldmann MKP. However, their results were considerably influenced by the examiner’s skill. Besides, Humphrey had restrictions on target presentation, and OCULUS and Kowa had problems in isopter drawing and in filling in the scotoma. OCTOPUS GKP was the only method that could correctly detect and depict all four defect patterns. It also had relatively shorter test durations among the three methods excluding Humphrey, which did not have a built-in function for test duration measurement. The perimeters’ test ranges for the periphery were 90° for Humphrey, OCULUS, and OCTOPUS GKP, and 80° for Kowa.

Conclusion

To assess kinetic fields with various defect patterns, OCTOPUS GKP seems to be the most useful method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aulhorn E. Glaukoma-Gesichtsfield. Ophthalmologica. 1968;158:469–87 (in German).

    Article  Google Scholar 

  2. Grover S, Fishman GA, Brown J Jr. Patterns of visual field progression in patients with retinitis pigmentosa. Ophthalmology. 1988;105:1069–75.

    Article  Google Scholar 

  3. Chauhan BC, Drance SM. The relationship between intraocular pressure and visual field progression in glaucoma. Graefes Arch Clin Expo Ophthalmol. 1992;230:521–6.

    Article  CAS  Google Scholar 

  4. Goldmann H. Ein selbstregistrierendes Projektionskugelperimeter. Ophthalmologica. 1945;109:71–9 (in German).

    Article  Google Scholar 

  5. Bittner AK, Iftikhar MH, Dagnelie G. Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;11:8042–6.

    Article  Google Scholar 

  6. Schiefer U, Strasburger H, Becker ST, Vonthein R, Schiller J, Dietrich TJ, et al. Reaction time in automated kinetic perimetry: effects of stimulus luminance, eccentricity, and movement direction. Vision Res. 2001;41:2157–64.

    Article  CAS  PubMed  Google Scholar 

  7. Nowomiejska KE, Vonthein R, Paetzold J, Zagorski Z, Kardon R, Schiefer U. Comparison between semiautomated kinetic perimetry and conventional Goldmann manual kinetic perimetry in advanced visual field loss. Ophthalmoly. 2005;112:1343–54.

    Article  Google Scholar 

  8. Schiefer U, Nowomiejska K, Krapp E, Paetzold J, Johnson CA. K-Train- a computer-based, interactive training propram with an incorporated certification system for practicing kinetic perimetry: evaluation of acceptance and success rate. Graefes Arch Clin Expo Ophthalmol. 2006;244:1300–9.

    Article  CAS  Google Scholar 

  9. Nevalainen J, Paetzold J, Krapp E, Vonthein R, Johnson CA, Schiefer U. The use of semi-automated kinetic perimetry (SPK) to monitor advanced glaucomatous visual field loss. Graefes Arch Clin Expo Ophthalmol. 2008;246:1331–9.

    Article  CAS  Google Scholar 

  10. Nowomiejska K, Vonthein R, Paetzold J, Zagorski Z, Kardon R, Schiefer U. Reaction time during semi-automated kinetic perimetry (SPK) in patients with advanced visual field loss. Acta Ophthalmol. 2010;88:65–9.

    Article  PubMed  Google Scholar 

  11. Wilscher S, Wabbels B, Lorenz B. Feasibility and outocome of automated kinetic perimetry in children. Graefes Arch Clin Exp Ophthalmolo. 2010;248:1493–500.

    Article  Google Scholar 

  12. Damgaard-Jenson L. Vertical steps in isopters at the hemianopic border in normal and glacomatous eye. Acta Ophthalmol. 1977;55:111–21.

    Article  Google Scholar 

  13. Stewart WC, Shields MB, Ollie AR. Peripheral visual field testing by automated kinetic perimetry in glaucoma. Arch Ophthalmol. 1988;106:202–6.

    Article  CAS  PubMed  Google Scholar 

  14. Miller KN, Shields MB, Ollie AR. Automated kinetic perimetry with two peripheral isopters in glaucoma. Arch Ophthalmol. 1989;107:1316–20.

    Article  CAS  PubMed  Google Scholar 

  15. Gilpin LB, Stewart WC, Shields MB, Miller KN. Hemianopic offsets in the visual field of patients with glaucoma. Graefes Arch Clin Expo Ophthalmol. 1990;228:450–3.

    Article  CAS  Google Scholar 

  16. Portney GL, Krohn MA. Automated perimetry, background, insutruments and methods. Sury Ophthalmol. 1978;22:271–8.

    Article  CAS  Google Scholar 

  17. Heijl A, Drance SM. A clinical comparison of three computerized automatic perimeters in the detection of glaucoma defects. Arch Ophthalmol. 1981;99:832–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lynn JR, Swanson WH, Fellmann RL. Evaluation of automated kinetic perimetry (AKP) with the Humphrey Field Analyser. Perimetry Update. 1991;1990(1991):433–52.

    Google Scholar 

  19. Ballon BJ, Echelman DA, Shields MB, Ollie AR. Peripheral visual field testing in glaucoma by automated kinetic perimetry with the Humphrey Field Analyzer. Arch Ophthalmol. 1992;110:1730–2.

    Article  CAS  PubMed  Google Scholar 

  20. Omodaka K, Kunimatsu-Sanuki S, Morin R, Tsuda S, Yokoyama Y, Takahashi H, et al. Development of a new strategy of visual field testing for macular dysfunction in patients with open angle glaucoma. Jpn J Ophthalmol. 2013;57:457–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Reiyo Tahara and Ms. Yukiko Mimuro for their editorial helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Hashimoto.

Ethics declarations

Conflicts of interest

All authors declare that they have no competing interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, S., Matsumoto, C., Eura, M. et al. Evaluation of kinetic programs in various automated perimeters. Jpn J Ophthalmol 61, 299–306 (2017). https://doi.org/10.1007/s10384-017-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0516-y

Keywords

Navigation