Japanese Journal of Ophthalmology

, Volume 59, Issue 4, pp 230–235 | Cite as

Retinal nerve fiber layer and ganglion cell complex thicknesses measured with spectral-domain optical coherence tomography in eyes with no light perception due to nonglaucomatous optic neuropathy

  • Atsuya Miki
  • Takao Endo
  • Takeshi Morimoto
  • Kenji Matsushita
  • Takashi Fujikado
  • Kohji Nishida
Clinical Investigation



To measure retinal nerve fiber layer thickness (RNFLT) and ganglion cell complex thickness (GCCT) in eyes with no light perception due to nonglaucomatous optic neuropathy using spectral-domain optical coherence tomography.


Fourteen eyes of 14 patients (9 women, 5 men; mean age 56.0 ± 16.6 (standard deviation) years] with no light perception due to optic neuropathy were recruited to this retrospective study. Only clinically stable eyes were included. Eyes were imaged at least 6 months after the onset of the disease. Five patients lost light perception due to traumatic optic neuropathy, four patients had ischemic optic neuropathy, two patients had optic neuritis, two patients had compressive optic neuropathy, and one patient had optic nerve atrophy. Global and quadrant RNFLTs were measured with the Cirrus HD-optical coherence tomography (OCT) system; global and hemisphere GCCTs were measured by spectral-domain OCT (RTVue OCT system). Only reliable OCT images were used for further analysis.


Reliable RNFL images were obtained in 12 eyes, and reliable GCC images were obtained in 11 eyes. Global, superior, temporal, inferior, and nasal RNFLT were 57.5 ± 6.7, 60.6 ± 7.6, 54.1 ± 11.2, 59.7 ± 9.5, and 55.6 ± 7.4 µm, respectively. Global, superior, and inferior GCC thicknesses were 68.8 ± 9.6, 70.7 ± 12.2, and 67.8 ± 8.8 µm, respectively.


A considerable proportion of RNFL and GCC remained in eyes with no light perception vision. Clinicians should take this into account when evaluating the severity of optic neuropathy from OCT-measured RNFLT and GCCT.


Retinal nerve fiber layer Optical coherence tomography Ganglion cell complex Optic neuropathy Structure–function 


Conflicts of interest

A. Miki, None; T. Endo, None; T. Morimoto, None; K. Matsushita, None; T. Fujikado, None; K. Nishida, None.


  1. 1.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Gabriele ML, Wollstein G, Ishikawa H, Xu J, Kim J, Kagemann L, et al. Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res. 2011;29:556–79.CrossRefGoogle Scholar
  3. 3.
    Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47:2006–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Leung CK, Chong KK-L, Chan W, Yiu CK-F, Tso M, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Medeiros FA, Zangwill L, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012;53:6939–46.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res. 2010;29:249–71.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hood DC, Anderson S, Rouleau J, Wenick AS, Grover LK, Behrens MM, et al. Retinal nerve fiber structure versus visual field function in patients with ischemic optic neuropathy: a test of a linear model. Ophthalmology. 2008;115:904–10.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kanamori A, Nakamura M, Yamada Y, Negi A. Longitudinal study of retinal nerve fiber layer thickness and ganglion cell complex in traumatic optic neuropathy. Arch Ophthalmol. 2012;130:1067–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Pavlidis M, Stupp T, Nascar R, Cengiz C, Thanos S. Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest Ophthalmol Vis Sci. 2003;44:5196–205.PubMedCrossRefGoogle Scholar
  11. 11.
    Radius RL, Anderson DR. The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol. 1979;97:948–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan CKM, Miller NR. Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuroophthalmol. 2007;27:176–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Groth SL, Harrison A, Grajewski AL, Lee MS. Retinal nerve fiber layer thickness using spectral-domain optical coherence tomography in patients with no light perception secondary to optic atrophy. J Neuroophthalmol. 2013;33:37–9.PubMedCrossRefGoogle Scholar
  14. 14.
    van Velthoven MEJ, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149:18–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol. 2011;22:115–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Knight OJ, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271–7.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tan O, Li G, Lu AT-H, Varma R, Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tan O, Chopra V, Lu AT-H, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(2305–14):e1–2.Google Scholar
  20. 20.
    Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Choe TE, Abbott CJ, Piper C, Wang L, Fortune B. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. PLoS One. 2014;9:e113011.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Leung CK-S, Cheung CY-L, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan BB, Natividad M, Chua K-C, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma. 2012;21:266–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4478–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116:1264–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:807–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984;97:760–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Repka MX, Quigley HA. The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology. 1989;96:26–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Poinoosawmy D, Fontana L, Wu JX, Fitzke FW, Hitchings RA. Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol. 1997;81:350–4.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Funaki S, Shirakashi M, Funaki H, Yaoeda K, Abe H. Relationship between age and the thickness of the retinal nerve fiber layer in normal subjects. Jpn J Ophthalmol. 1999;43:180–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Alamouti B, Funk J. Retinal thickness decreases with age : an OCT study. Br J Ophthalmol. 2003;87:899–902.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Da Pozzo S, Iacono P, Marchesan R, Minutola D, Ravalico G. The effect of ageing on retinal nerve fibre layer thickness: an evaluation by scanning laser polarimetry with variable corneal compensation. Acta Ophthalmol Scand. 2006;84:375–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hirasawa H, Tomidokoro A, Araie M, Konno S, Saito H, Iwase A, et al. Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010;128:1420–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Leung CK-S, Yu M, Weinreb RN, Ye C, Liu S, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119:731–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Danesh-Meyer HV, Yap J, Frampton C, Savino PJ. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology. 2014;121:1516–23.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2015

Authors and Affiliations

  • Atsuya Miki
    • 1
  • Takao Endo
    • 2
  • Takeshi Morimoto
    • 2
  • Kenji Matsushita
    • 1
  • Takashi Fujikado
    • 2
  • Kohji Nishida
    • 1
  1. 1.Department of OphthalmologyOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Department of Applied Visual ScienceOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations