Japanese Journal of Ophthalmology

, Volume 58, Issue 1, pp 47–55 | Cite as

Width of abnormal ganglion cell complex area determined using optical coherence tomography to predict glaucoma

  • Ulfah RimayantiEmail author
  • Miftahul Akhyar Latief
  • Paramastri Arintawati
  • Tomoyuki Akita
  • Junko Tanaka
  • Yoshiaki Kiuchi
Clinical Investigation



We examined the relationships of ganglion cell complex (GCC) parameters determined on spectral-domain optical coherence tomography (SD-OCT), especially the width of abnormal areas, and its ability to detect various stages of glaucoma.


OCT parameters of glaucomatous and normal eyes were determined with the RTVue SD-OCT. Widths of abnormal GCC areas marked by either red or yellow on the OCT significance map were quantified with image J software. The relationships between the abnormal GCC area and other GCC parameters [thickness, focal loss volume (FLV), and global loss volume (GLV)] and the peripapillary retinal nerve fiber layer (RNFL) thickness were determined using regression analyses. The potential of using the GCC and RNFL parameters to discriminate between glaucomatous and normal eyes was examined using the area under the curve (AUC) of receiver operating characteristics (ROC).


One hundred and eighteen glaucomatous eyes and 45 normal control eyes were studied. Nonlinear models best described the relationships between abnormal GCC area and other GCC parameters. Scatter plots showed changes in the average thickness of the GCC and RNFL, and the average sizes of the GLV preceded changes of abnormal areas of the GCC. The width of the abnormal areas on the GCC thickness map was comparable with other parameters for diagnosing glaucoma.


OCT thickness parameters appeared to decrease faster than the area parameter at the initial stage of glaucoma. The sizes of abnormal areas of the GCC were the most pertinent parameters for detecting glaucoma.


Ganglion cell complex (GCC) abnormal GCC area Glaucoma Optical coherence tomography 



Professional medical English editing: This manuscript was edited by Dr. Duco Hamasaki in Florida and Dr. Brian Quinn, editor-in-chief, Japan Medical Communication.

Conflicts of interest

U. Rimayanti, None; M. Akhyar Latief, None; P. Arintawati, None; T. Akita, None; J. Tanaka, None; Y. Kiuchi, None.


  1. 1.
    Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.PubMedGoogle Scholar
  3. 3.
    Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Leung CKS, Chan WM, Yung WH, Ng ACK, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurement for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Tan O, Chopra V, Lu ATH, Schuman JS, Ishikawa H, Varma R, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-Domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2012;. doi: 10.1097/IJG.0b013e318259b2e1.Google Scholar
  10. 10.
    Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS. Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol. 2010;54:544–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Japan Glaucoma Society. Guidelines for glaucoma. 2nd ed. Japan Glaucoma Society: Tokyo; 2006.Google Scholar
  12. 12.
    Hodapp E PR, Anderson DR. Clinical decisions in glaucoma. St.Louis: C.V. Mosby; 1993.Google Scholar
  13. 13.
    Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and swedish interactive threshold algorithms. Arch Ophthalmol. 2002;120:1136–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Rolle T, Briamonte C, Curto D, Grignolo FM. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin Ophthalmol. 2011;5:961–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yamashita T, Miki A, Iguchi Y, Kimura K, Maeda F, Kiryu J. Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012;56:502–10.PubMedCrossRefGoogle Scholar
  16. 16.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Sung KR, Wollstein G, Schuman JS, Bilonick RA, Ishikawa H, Townsend KA, et al. Scan quality effect on glaucoma discrimination by glaucoma imaging devices. Br J Ophthalmol. 2009;93:1580–4.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.Google Scholar
  20. 20.
    Vladusich T, Lucassen MP, Cornelissen FW. Edge integration and the perception of brightness and darkness. J Vis. 2006;6:1126–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Goodenough AE, Hart AG, Stafford R. Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS ONE. 2012;. doi: 10.1371/journal.pone.0034338.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, et al. Relationship between visual field sensitivity and ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:6401–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Starck PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138:218–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and papillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Kita Y, Kita R, Nitta A, Nishimuea C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117:738–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:807–14.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Ulfah Rimayanti
    • 1
    Email author
  • Miftahul Akhyar Latief
    • 1
  • Paramastri Arintawati
    • 2
  • Tomoyuki Akita
    • 3
  • Junko Tanaka
    • 3
  • Yoshiaki Kiuchi
    • 1
  1. 1.Department of Ophthalmology and Visual Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of OphthalmologyMedical Faculty of Diponegoro UniversitySemarangIndonesia
  3. 3.Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations