Japanese Journal of Ophthalmology

, Volume 58, Issue 1, pp 56–61 | Cite as

Intraobserver and interobserver agreement of computer software-assisted optic nerve head photoplanimetry

  • Masaki TanitoEmail author
  • Takeshi Sagara
  • Michiya Takamatsu
  • Yoshiaki Kiuchi
  • Toshiaki Nakagawa
  • Yasuyuki Fujita
  • Akihiro Ohira
Clinical Investigation



To report the reproducibility profile of optic nerve head parameters obtained by computer software-assisted fundus photoplanimetry.


Fundus photographs obtained during a population-based health survey (Sakurae Study) were planimetrically analyzed using newly developed computer software, CDSketch. The parameters assessed included vertical and horizontal cup-to-disc (C/D) ratios, superior and inferior rim-to-disc (R/D) ratios, disc and cup vertical-to-horizontal (V/H) ratios, and disc-macular distance-to-disc diameter (DM/DD) ratio. For intraobserver and interobserver agreement assessments, we calculated the coefficients of variation (CVs) and intraclass correlation coefficients (ICCs) of the mean of three measurements obtained by one observer and a one-time measurement by three observers, respectively.


The intraobserver CVs were between 2.4 % (DM/DD ratio) and 11.0 % (inferior R/D ratio), and the ICCs were between 0.868 (cup V/H ratio) and 0.976 (DM/DD ratio); all intraobserver ICCs had almost perfect agreement (>0.81). The interobserver CVs were between 2.6 % (disc V/H ratio) and 18.0 % (inferior R/D ratio), and the ICCs were between 0.762 (cup V/H ratio) and 0.930 (DM/DD ratio); the interobserver ICCs were categorized as substantial (0.61–0.80) for the inferior R/D and cup V/H ratios and as almost perfect for the other five parameters.


The consistent profiles of the planimetric parameters suggest the suitability of software-assisted photoplanimetry for assessing optic disc characteristics in glaucoma clinical study and practice.


Cup-to-disc ratio Disc-macular distance-to-disc diameter (DM/DD) ratio Fundus-photo planimetry Intraclass correlation coefficient (ICC) Rim-to-disc ratio 



This study was supported and conducted in part by the research project “The preventive study of critical diseases in the elderly through the application of the cohort framework” at the Center for Community-Based Health Research and Education (COHRE), Shimane University, Shimane Japan. The authors are grateful to Ms. Ryoko Takahashi for her technical assistance in digitization of the fundus films.


  1. 1.
    Araie M. Test–retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol. 2013;57:1–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Kahn HA, Leibowitz H, Ganley JP, Kini M, Colton T, Nickerson R, et al. Randomized controlled clinical trial. National Eye Institute workshop for ophthalmologists. Standardizing diagnostic procedures. Am J Ophthalmol. 1975;79:768–75.PubMedGoogle Scholar
  3. 3.
    Lichter PR. Variability of expert observers in evaluating the optic disc. Trans Am Ophthalmol Soc. 1976;74:532–72.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.PubMedGoogle Scholar
  5. 5.
    Sawaguchi S, Sakai H, Iwase A, Yamamoto T, Abe H, Tomita G, et al. Prevalence of primary angle closure and primary angle-closure glaucoma in a southwestern rural population of Japan: the Kumejima Study. Ophthalmology. 2012;119:1134–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim M, Kim TW, Park KH, Kim JM. Risk factors for primary open-angle glaucoma in South Korea: the Namil study. Jpn J Ophthalmol. 2012;56:324–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Morgan JE, Sheen NJ, North RV, Choong Y, Ansari E. Digital imaging of the optic nerve head: monoscopic and stereoscopic analysis. Br J Ophthalmol. 2005;89:879–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Samarawickrama C, Pai A, Huynh SC, Burlutsky G, Jonas JB, Mitchell P. Measurement of optic nerve head parameters: comparison of optical coherence tomography with digital planimetry. J Glaucoma. 2009;18:571–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Saito H, Tsutsumi T, Iwase A, Tomidokoro A, Araie M. Correlation of disc morphology quantified on stereophotographs to results by Heidelberg Retina Tomograph II, GD× variable corneal compensation, and visual field tests. Ophthalmology. 2010;117:282–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsutsumi T, Tomidokoro A, Araie M, Iwase A, Sakai H, Sawaguchi S. Planimetrically determined vertical cup/disc and rim width/disc diameter ratios and related factors. Invest Ophthalmol Vis Sci. 2012;53:1332–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanito M, Sagara T, Takamatsu M, Kiuchi Y, Nakagawa T, Fujita Y, et al. Fundus photoplanimetry of the optic nerve head in the Sakurae Study. Nippon Ganka Gakkai Zasshi. 2012;116:730–9 (in Japanese).PubMedGoogle Scholar
  12. 12.
    Miglior S, Albe E, Guareschi M, Rossetti L, Orzalesi N. Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg retina tomograph. Ophthalmology. 2002;109:1072–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Itai N, Tanito M, Chihara E. Comparison of optic disc topography measured by retinal thickness analyzer with measurement by Heidelberg Retina Tomograph II. Jpn J Ophthalmol. 2003;47:214–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Correnti AJ, Wollstein G, Price LL, Schuman JS. Comparison of optic nerve head assessment with a digital stereoscopic camera (discam), scanning laser ophthalmoscopy, and stereophotography. Ophthalmology. 2003;110:1499–505.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Arthur SN, Aldridge AJ, De Leon-Ortega J, McGwin G, Xie A, Girkin CA. Agreement in assessing cup-to-disc ratio measurement among stereoscopic optic nerve head photographs, HRT II, and stratus OCT. J Glaucoma. 2006;15:183–9.PubMedCrossRefGoogle Scholar
  16. 16.
    DeLeon Ortega JE, Sakata LM, Kakati B, McGwin G Jr, Monheit BE, Arthur SN, et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:1156–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Abe H, Shirakashi M, Tsutsumi T, Araie M, Tomidokoro A, Iwase A, et al. Laser scanning tomography of optic discs of the normal Japanese population in a population-based setting. Ophthalmology. 2009;116:223–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Seymenoglu G, Baser E, Ozturk B. Comparison of spectral-domain optical coherence tomography and Heidelberg Retina Tomograph III optic nerve head parameters in glaucoma. Ophthalmologica. 2012;. doi: 10.1159/000341574.PubMedGoogle Scholar
  19. 19.
    Yang B, Ye C, Yu M, Liu S, Lam DS, Leung CK. Optic disc imaging with spectral-domain optical coherence tomography: variability and agreement study with Heidelberg retinal tomograph. Ophthalmology. 2012;119:1852–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Shin HY, Park HY, Jung KI, Park CK. Glaucoma diagnosis optic disc analysis comparing Cirrus spectral domain optical coherence tomography and Heidelberg Retina Tomograph II. Jpn J Ophthalmol. 2013;57:41–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Goto T, Tanito M, Itai N, Chihara E. Scanning laser polarimetry measurement with variable corneal compensation compared with fixed corneal compensation. Jpn J Ophthalmol. 2004;48:507–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim JH, Kim NR, Kim H, Lee ES, Seong GJ, Kim CY. Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:220–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Arnalich-Montiel F, Munoz-Negrete FJ, Rebolleda G, Sales-Sanz M, Cabarga C. Cup-to-disc ratio: agreement between slit-lamp indirect ophthalmoscopic estimation and stratus optical coherence tomography measurement. Eye. 2007;21:1041–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Manassakorn A, Aupapong S. Retinal nerve fiber layer defect patterns in primary angle-closure and open-angle glaucoma: a comparison using optical coherence tomography. Jpn J Ophthalmol. 2011;55:28–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoo YC, Park KH. Influence of angular width and peripapillary position of localized retinal nerve fiber layer defects on their detection by time-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:115–22.PubMedCrossRefGoogle Scholar
  27. 27.
    The Japan Glaucoma Society Guidelines for Glaucoma (3rd edn). Nippon Ganka Gakkai Zasshi. 2012;116:3–46 (in Japanese).Google Scholar
  28. 28.
    Gloster J, Parry DG. Use of photographs for measuring cupping in the optic disc. Br J Ophthalmol. 1974;58:850–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology. 1988;95:350–6.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Masaki Tanito
    • 1
    Email author
  • Takeshi Sagara
    • 2
    • 3
  • Michiya Takamatsu
    • 4
  • Yoshiaki Kiuchi
    • 4
  • Toshiaki Nakagawa
    • 5
  • Yasuyuki Fujita
    • 6
  • Akihiro Ohira
    • 1
  1. 1.Department of OphthalmologyShimane University Faculty of MedicineIzumoJapan
  2. 2.Department of OphthalmologyYamaguchi University Graduate School of MedicineUbeJapan
  3. 3.Sagara Eye ClinicHagiJapan
  4. 4.Department of Ophthalmology and Visual ScienceHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
  5. 5.Research and Development Section, Electronics and Optics DivisionKowa Company, LtdHamamatsuJapan
  6. 6.Department of Public HealthShimane University Faculty of MedicineIzumoJapan

Personalised recommendations