Japanese Journal of Ophthalmology

, Volume 57, Issue 6, pp 546–552 | Cite as

Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression

  • Jong Rak Lee
  • Kyung Rim Sung
  • Jung Hwa Na
  • Kilhwan Shon
  • Kyoung Sub Lee
Clinical Investigation



To compare the outcomes of Cirrus spectral-domain optical coherence tomography (OCT) and optic disc/retinal nerve fiber layer (RNFL) photographic assessment in detecting glaucomatous progression.


Two-hundred twenty-six eyes of 130 glaucoma patients (mean follow-up: 2.5 years) with at least 5 OCT examinations were included. Eyes were classified into one of four groups (diffuse RNFL defect; localized RNFL defect; no RNFL defect; unidentifiable RNFL status) based on baseline RNFL photographs. After performing the entire series of optic disc/RNFL photographic assessments, the eyes were classified into one of three groups: stable, progressed, and undetermined. Progression was divided into one of four categories (optic disc rim thinning; widening RNFL defect; deepening RNFL defect; new disc hemorrhage). OCT progression was determined using guided progression analysis (GPA) software.


One-hundred thirty-nine eyes had diffuse RNFL defects, 34 eyes had localized RNFL defects, 42 eyes had no RNFL defects, and 11 eyes had unidentifiable RNFL at baseline. Forty-six eyes showed at least one category of progression upon expert assessment of optic disc/RNFL photographs, while OCT GPA detected progression in 35 eyes. Among the 34 eyes in which progression was observed in photographs only, 15 showed a new disc hemorrhage, 12 presented deepening of an RNFL defect, 10 showed optic disc rim change, and 6 had widening of an RNFL defect. Among the 23 eyes processed only by OCT GPA, 18 had a diffuse RNFL defect at baseline.


OCT GPA was more sensitive in eyes with a diffuse RNFL defect whereas photographic assessment was better for detecting optic disc hemorrhage and deepening of an RNFL defect when evaluating structural progression.


Optic disc/RNFL photography Spectral domain optical coherence tomography Glaucoma Progression 


Conflicts of interest

J. R. Lee, None; K. R. Sung, None; J. H. Na, None; K. Shon, None; K. S. Lee, None.


  1. 1.
    Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP, et al. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol. 2001;119:1492–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY, et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Vizzeri G, Bowd C, Weinreb RN, Balasubramanian M, Medeiros FA, Sample PA, et al. Determinants of agreement between the confocal scanning laser tomograph and standardized assessment of glaucomatous progression. Ophthalmology. 2010;117:1953–9.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Leary N, Crabb DP, Mansberger SL, Fortune B, Twa MD, Lloyd MJ, et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images. Arch Ophthalmol. 2010;128:560–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Vizzeri G, Weinreb RN, Martinez de la Casa JM, Alencar LM, Bowd C, Balasubramanian M, et al. Clinicians agreement in establishing glaucomatous progression using the Heidelberg retina tomograph. Ophthalmology. 2009;116:14–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Gaasterland DE, Blackwell B, Dally LG, Caprioli J, Katz LJ, Ederer F. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Trans Am Ophthalmol Soc. 2001;99:177–84, discussion 84–5.Google Scholar
  9. 9.
    Jampel HD, Friedman D, Quigley H, Vitale S, Miller R, Knezevich F, et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol. 2009;147(39–44):e1.PubMedGoogle Scholar
  10. 10.
    Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS, et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139:39–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Budenz DL, Michael A, Chang RT, McSoley J, Katz J, et al. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology. 2005;112:3–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003;135:513–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Soliman MA, Van Den Berg TJ, Ismaeil AA, De Jong LA, De Smet MD, et al. Retinal nerve fiber layer analysis: relationship between optical coherence tomography and red-free photography. Am J Ophthalmol. 2002;133:187–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001;42:1993–2003.PubMedGoogle Scholar
  16. 16.
    Zangwill LM, Williams J, Berry CC, Knauer S, Weinreb RN, et al. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000;107:1309–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim DM, et al. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci. 2009;50:662–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM, et al. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci. 2011;52:1138–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Na JH, Sung KR, Baek S, Kim YJ, Durbin MK, Lee HJ, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:3817–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R, et al. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993;100:1800–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Jeoung JW, Kim SH, Park KH, Kim TW, Kim DM, et al. Quantitative assessment of diffuse retinal nerve fiber layer atrophy using optical coherence tomography: diffuse atrophy imaging study. Ophthalmology. 2010;117:1946–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Drance S, Anderson DR, Schulzer M. Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708.PubMedCrossRefGoogle Scholar
  23. 23.
    Nitta K. Disc hemorrhage is a sign of progression in normal-tension glaucoma. J Glaucoma. 2012;21:276.PubMedGoogle Scholar
  24. 24.
    Sung KR. Disc hemorrhage: is that a risk factor or sign of progression? J Glaucoma. 2012;21:275–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Sung KR, Sun JH, Na JH, Lee JY, Lee Y, et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119:308–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Park SB, Sung KR, Kang SY, Kim KR, Kook MS, et al. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol. 2009;127:1603–9.Google Scholar
  27. 27.
    Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116:1264–70.Google Scholar
  28. 28.
    Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A, et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am J Ophthalmol. 1991;111:485–90.PubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Jong Rak Lee
    • 1
  • Kyung Rim Sung
    • 1
  • Jung Hwa Na
    • 1
  • Kilhwan Shon
    • 1
  • Kyoung Sub Lee
    • 1
  1. 1.Department of Ophthalmology, College of Medicine, Asan Medical CenterUniversity of UlsanSeoulKorea

Personalised recommendations