Japanese Journal of Ophthalmology

, Volume 57, Issue 3, pp 308–315 | Cite as

Predictive value of preoperative optical coherence tomography for visual outcome following macular hole surgery: effects of imaging alignment

  • Wataru Matsumiya
  • Sentaro KusuharaEmail author
  • Tsuyoshi Shimoyama
  • Shigeru Honda
  • Yasutomo Tsukahara
  • Akira Negi
Clinical Investigation



To investigate the effects of reproducibility of optical coherence tomography (OCT) measurements and imaging alignment on predictive performance for visual outcome following macular hole (MH) surgery.


We retrospectively reviewed 50 eyes that underwent MH surgery. Preoperative cross-sectional images through the center of the MH (on-center image) and through an off-center point (off-center image) were obtained from the OCT data. In each image, the following OCT parameters were either measured or calculated: minimum diameter, base diameter, hole height, temporal and nasal arm length, photoreceptor inner segment/outer segment (IS/OS) defect length, the hole form factor, the macular hole index and the tractional hole index. The IS/OS defect area was also measured.


The reproducibility of OCT parameter values was moderate to high, and there was a significant difference in the mean measurement values between the on- and off-center images. Predictive values varied between sessions and raters, and only the preoperative photoreceptor IS/OS defect length consistently showed significant correlation with postoperative visual outcome.


Both the reproducibility and imaging alignment might affect the predictive performance of the OCT parameter for postoperative visual outcome following MH surgery. The preoperative photoreceptor IS/OS defect length seems to be the most useful parameter in this regard.


Macular hole Optical coherence tomography Visual acuity Reproducibility Imaging alignment 

Supplementary material

10384_2013_232_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 49 kb)
10384_2013_232_MOESM2_ESM.doc (50 kb)
Supplementary material 2 (DOC 49 kb)
10384_2013_232_MOESM3_ESM.doc (50 kb)
Supplementary material 3 (DOC 49 kb)
10384_2013_232_MOESM4_ESM.doc (50 kb)
Supplementary material 4 (DOC 49 kb)
10384_2013_232_MOESM5_ESM.doc (45 kb)
Supplementary material 5 (DOC 45 kb)


  1. 1.
    Park DW, Sipperley JO, Sneed SR, Dugel PU, Jacobsen J. Macular hole surgery with internal-limiting membrane peeling and intravitreous air. Ophthalmology. 1999;106:1392–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Brooks HL Jr. Macular hole surgery with and without internal limiting membrane peeling. Ophthalmology. 2000;107:1939–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Sheidow TG, Blinder KJ, Holekamp N, Joseph D, Shah G, Grand MG, et al. Outcome results in macular hole surgery: an evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology. 2003;110:1697–701.PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Abdulla NA, Thompson JT, Sjaarda RN. Results of macular hole surgery with and without epiretinal dissection or internal limiting membrane removal. Ophthalmology. 2004;111:142–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Willis AW, Garcia-Cosio JF. Macular hole surgery. Comparison of longstanding versus recent macular holes. Ophthalmology. 1996;103:1811–4.PubMedGoogle Scholar
  6. 6.
    Scott RA, Ezra E, West JF, Gregor ZJ. Visual and anatomical results of surgery for long standing macular holes. Br J Ophthalmol. 2000;84:150–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Ezra E, Gregor ZJ. Surgery for idiopathic full-thickness macular hole: two-year results of a randomized clinical trial comparing natural history, vitrectomy, and vitrectomy plus autologous serum: Morfields Macular Hole Study Group RAeport no. 1. Arch Ophthalmol. 2004;122:224–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Stec LA, Ross RD, Williams GA, Trese MT, Margherio RR, Cox MS Jr. Vitrectomy for chronic macular holes. Retina. 2004;24:341–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Ullrich S, Haritoglou C, Gass C, Schaumberger M, Ulbig MW, Kampik A. Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol. 2002;86:390–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Kusuhara S, Teraoka Escano MF, Fujii S, Nakanishi Y, Tamura Y, Nagai A. Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol. 2004;138:709–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Haritoglou C, Neubauer AS, Reiniger IW, Priglinger SG, Gass CA, Kampik A. Long-term functional outcome of macular hole surgery correlated to optical coherence tomography measurements. Clin Experiment Ophthalmol. 2007;35:208–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruiz-Moreno JM, Staicu C, Pinero DP, Montero J, Lugo F, Amat P. Optical coherence tomography predictive factors for macular hole surgery outcome. Br J Ophthalmol. 2008;92:640–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta B, Laidlaw DA, Williamson TH, Shah SP, Wong R, Wren S. Predicting visual success in macular hole surgery. Br J Ophthalmol. 2009;93:1488–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Chung SE, Lim DH, Kang SW, Yoon YH, Chae JB, Roh IH. Central photoreceptor viability and prediction of visual outcome in patients with idiopathic macular holes. Korean J Ophthalmol. 2010;24:213–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Oh J, Smiddy WE, Flynn HW Jr, Gregori G, Lujan B. Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci. 2010;51:1651–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Ooka E, Mitamura Y, Baba T, Kitahashi M, Oshitari T, Yamamoto S. Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol. 2011;152(283–90):e1.PubMedGoogle Scholar
  17. 17.
    Kim NM, Park HJ, Koo GH, Lee JE, Oum BS. Photoreceptor layer assessed in tissue layer image using spectral-domain optical coherence tomography after surgical closure of macular hole. Retina. 2011;31:1483–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Wakely L, Rahman R, Stephenson J. A comparison of several methods of macular hole measurement using optical coherence tomography, and their value in predicting anatomical and visual outcomes. Br J Ophthalmol. 2012;96:1003–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Polito A, Del Borrello M, Isola M, Zemella N, Bandello F. Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography. Arch Ophthalmol. 2005;123:1330–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Krzystolik MG, Strauber SF, Aiello LP, Beck RW, Berger BB, Bressler NM, et al. Reproducibility of macular thickness and volume using Zeiss optical coherence tomography in patients with diabetic macular edema. Ophthalmology. 2007;114:1520–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Krebs I, Hagen S, Brannath W, Haas P, Womastek I, de Salvo G, et al. Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration. Ophthalmology. 2010;117:1577–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee ES, Kim H, Kim JM. Effect of signal strength on reproducibility of peripapillary retinal nerve fiber layer thickness measurement and its classification by time-domain optical coherence tomography. Jpn J Ophthalmol. 2010;54:414–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim JH, Kim NR, Kim H, Lee ES, Seong GJ, Kim CY. Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:220–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Ashikari M, Ozeki H, Tomida K, Sakurai E, Tamai K, Ogura Y. Long-term retention of dye after indocyanine green-assisted internal limiting membrane peeling. Jpn J Ophthalmol. 2006;50:349–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Horio N, Horiguchi M. Effect on visual outcome after macular hole surgery when staining the internal limiting membrane with indocyanine green dye. Arch Ophthalmol. 2004;122:992–6.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Wataru Matsumiya
    • 1
  • Sentaro Kusuhara
    • 1
    Email author
  • Tsuyoshi Shimoyama
    • 1
  • Shigeru Honda
    • 1
  • Yasutomo Tsukahara
    • 1
  • Akira Negi
    • 1
  1. 1.Division of Ophthalmology, Department of SurgeryKobe University Graduate School of MedicineKobeJapan

Personalised recommendations