Japanese Journal of Ophthalmology

, Volume 57, Issue 1, pp 120–125

Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats

  • Takatomo Miyake
  • Akiko Nishiwaki
  • Tsutomu Yasukawa
  • Shinya Ugawa
  • Shoichi Shimada
  • Yuichiro Ogura
Laboratory Investigation

Abstract

Background

Retinal ischemia in eyes with diabetic retinopathy and retinal vein occlusion leads to local tissue acidosis. Acid-sensing ion channels (ASICs) are expressed in photoreceptors and other neurons in the retina, and may play a role in acid-induced cell injury. The purpose of this study was to investigate the neuroprotective effects of amiloride, an ASIC blocker, on induced retinal ischemia in rats.

Methods

Transient retinal ischemia was induced in male Long–Evans rats by the temporary ligation of the optic nerve. Just before the induction of ischemia, the experimental eyes underwent intravitreal injection of amiloride. On day 7, the retinal damage in eyes that underwent amiloride treatment (and in those that did not undergo the treatment) was evaluated by histology and electroretinogram (ERG).

Results

Transient retinal ischemia caused retinal degeneration with thinning of the inner layer of the retina. The blockage of ASICs with amiloride significantly prevented retinal degeneration. ERG demonstrated that the reduction in a- and b-wave amplitudes induced by the transient retinal ischemia was significantly prevented by the application of amiloride.

Conclusions

The present study suggests that ASICs might, at least in part, play a pathophysiological role in ischemia-induced neurodegeneration. Blockage of ASICs may have a potential neuroprotective effect in ocular ischemic diseases.

Keywords

Amiloride Acid-sensing ion channel (ASIC) Neuroprotection Retinal ischemia 

References

  1. 1.
    Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;93:91–147.CrossRefGoogle Scholar
  2. 2.
    Tsujikawa A, Ogura Y, Hiroshiba N, Miyamoto K, Kiryu J, Honda Y. In vivo evaluation of leukocyte dynamics in retinal ischemia reperfusion injury. Invest Ophthalmol Vis Sci. 1998;39:793–800.PubMedGoogle Scholar
  3. 3.
    Nicholls D, Attell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11:462–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11:465–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci. 1995;18:57–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology. 1995;34:1219–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res. 1997;37:3483–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Tymianski C. Cytosolic calcium concentrations and cell death in vitro. Adv Neurol. 1996;71:85–105.PubMedGoogle Scholar
  9. 9.
    Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies—the need for new approaches. Cerebrovasc Dis. 2004;17:153–66.Google Scholar
  11. 11.
    Lombardi G, Moroni F, Moroni F. Glutamate receptor antagonists protect against ischemia-induced retinal damage. Eur J Pharmacol. 1994;271:489–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Rehncrona S. Brain acidosis. Ann Emerg Med. 1985;14:770–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Krishtal O. The ASICs: signaling molecules? Modulators? Trends Neurosci. 2003;26:477–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 2002;110:1185–90.PubMedGoogle Scholar
  16. 16.
    Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of function for a shared structure. Physiol Rev. 2002;82:735–67.PubMedGoogle Scholar
  17. 17.
    Champigny G, Voilley N, Waldmann R, Lazdunski M. Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem. 1998;25:15418–22.CrossRefGoogle Scholar
  18. 18.
    Xiong ZG, Chu XP, Simon RP. Ca2+-permeable ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Hu W, Chen FH, Yuan FL, Zhang TY, Wu FR, Rong C, et al. Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm Res. 2012;61:327–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, et al. Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci. 2011;31:2101–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT. Rabbit retinal neurons and glia express a variety of EnaC/DEG subunits. Am J Physiol Cell Physiol. 2002;283:C126–34.PubMedGoogle Scholar
  23. 23.
    Lilley S, LeTissier P, Robbins J. The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci. 2004;24:1013–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N. Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci. 2006;26:5800–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci. 2004;24:1005–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Mizuno S, Nishiwaki A, Morita H, Miyake T, Ogura Y. Effect of periocular administration of triamcinolone acetonide on leukocyte-endothelium interactions in the ischemic retina. Invest Ophthalmol Vis Sci. 2007;48:2831–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Berkowitz BA, Lukaszew RA, Mullins CM, Penn JS. Impaired hyaloidal circulation function and uncoordinated ocular growth patters in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci. 1998;39:391–6.PubMedGoogle Scholar
  28. 28.
    Hughes WF. Quantitation of ischemic damage in the rat retina. Exp Eye Res. 1991;53:573–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 2000;41:3200–9.PubMedGoogle Scholar
  30. 30.
    Ettaiche M, Deval E, Pagnotta S, Lazdunski M, Lingueglia E. Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci. 2009;50:2417–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis. 2011;17:3300–8.PubMedGoogle Scholar
  32. 32.
    Brockway LM, Benos DJ, Keyser KT, Kraft TW. Blockade of amiloride-sensitive sodium channels alters multiple components of the mammalian electroretinogram. Vis Neurosci. 2005;22:143–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48:635–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakazawa T, Watanabe M, Kudo H, Nishida K, Tamai M. Susceptibility to N-methyl-d-aspartate toxicity in morphological and functional types of cat retinal ganglion cells. Jpn J Ophthalmol. 2010;54:156–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis. 2011;17:3300–8.PubMedGoogle Scholar
  36. 36.
    Ogishima H, Nakamura S, Nakanishi T, Imai S, Kakino M, Ishizuka F, et al. Ligation of the pterygopalatine and external carotid arteries induces ischemic damage in the murine retina. Invest Ophthalmol Vis Sci. 2011;52:9710–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Mizote M, Hirooka K, Fukuda K, Nakamura T, Itano T, Shiraga F. d-allose as ischemic retina injury inhibitor during rabbit vitrectomy. Jpn J Ophthalmol. 2011;55:294–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Tang CM, Presser F, Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science. 1988;240:213–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Palandoken H, By K, Hegde M, Harley WR, Gorin FA, Nantz MH. Amiloride peptide conjugates: prodrugs for sodium-proton exchange inhibition. J Pharmacol Exp Ther. 2005;312:961–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisber JD, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994;367:463–7.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2012

Authors and Affiliations

  • Takatomo Miyake
    • 1
  • Akiko Nishiwaki
    • 1
  • Tsutomu Yasukawa
    • 1
  • Shinya Ugawa
    • 3
  • Shoichi Shimada
    • 2
  • Yuichiro Ogura
    • 1
  1. 1.Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
  2. 2.Department of Neuronal Cell BiologyOsaka University Graduate School of MedicineSuitaJapan
  3. 3.Department of Anatomy and NeurobiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan

Personalised recommendations