Advertisement

Japanese Journal of Ophthalmology

, Volume 57, Issue 1, pp 41–46 | Cite as

Glaucoma diagnosis optic disc analysis comparing Cirrus spectral domain optical coherence tomography and Heidelberg retina tomograph II

  • Hye Young Shin
  • Hae-Young Lopilly Park
  • Kyoung In Jung
  • Chan Kee Park
Clinical Investigation

Abstract

Purpose

To evaluate the diagnostic ability of optic nerve head parameters, measured by Cirrus spectral domain optical coherence tomography (SD OCT) and Heidelberg retina tomograph II (HRT II) to detect concomitant glaucoma.

Methods

Cirrus OCT and HRT examinations of 62 eyes of 62 patients (32 with no perimetric glaucoma and 30 with concomitant perimetric glaucoma) evaluated between August 2010 and December 2010 were retrospectively analyzed and compared with regard to the optic disc morphometric parameter, disc area, rim area, cup-to-disc ratio (CDR), and cup volume. Receiver operating characteristic curves were constructed for the parameters and areas under the curves (AUCs) were compared.

Results

All parameters except disc area were significantly different between Cirrus OCT and HRT. Average cup-to-disc ratio (CDR), vertical CDR, and cup volume were greater when measured by OCT compared with HRT II (P = 0.002, P < 0.001, and P < 0.001, respectively). Rim area was smaller by OCT than by HRT II (P < 0.001). Of the parameters evaluated, rim area (0.938), average CDR (0.865), and vertical CDR (0.897) had higher AUCs with OCT than with HRT II. Glaucoma diagnostic capability using the AUC was greater for OCT than for the HRT.

Conclusions

Optic nerve head parameters measured by Cirrus OCT seem to be useful in differentiating glaucomatous optic nerve heads. The two types of instrument compared here should not be used interchangeably to obtain measurements of the optic disc for diagnosis of glaucoma.

Keywords

Cirrus spectral domain optical coherence tomography Glaucoma Optic nerve head analysis Confocal scanning laser ophthalmoscopy imaging 

References

  1. 1.
    Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.PubMedGoogle Scholar
  3. 3.
    Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Miglior S, Casula M, Guareschi M, Marchetti I, Iester M, Orzalesi N. Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes. Ophthalmology. 2001;108:1621–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS. Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol. 2010;54:544–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Sharma A, Oakley JD, Schiffman JC, Budenz DL, Anderson DR. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology. 2011;118:1348–57.PubMedCrossRefGoogle Scholar
  7. 7.
    Mwanza J-C, Oakley JD, Budenz DL, Anderson DR. Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118:241–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN. Comparison of measurement error of Cirrus HD-OCT and Heidelberg retina tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol. 2012;250:271–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinreb RN. Laser scanning tomography to diagnose and monitor glaucoma. Curr Opin Ophthalmol. 1993;4:3–6.PubMedGoogle Scholar
  10. 10.
    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRefGoogle Scholar
  11. 11.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Budenz DL, Fredette MJ, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology. 2008;115:661–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Knight OJ, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009;148:597–605.PubMedCrossRefGoogle Scholar
  15. 15.
    Cense B, Chen TC, Nassif N, Pierce MC,Yun SH, Park BH, et al. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bull Soc Belg Ophthalmol. 2006:123–32.Google Scholar
  16. 16.
    Vihanninjoki K, Tuulonen A, Burk RO, Airaksinen PJ. Comparison of optic disc measurements by Heidelberg retina tomograph and manual planimetric techniques. Acta Ophthalmol Scand. 1997;75:512–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;52:1098–102.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2012

Authors and Affiliations

  • Hye Young Shin
    • 1
  • Hae-Young Lopilly Park
    • 1
  • Kyoung In Jung
    • 1
  • Chan Kee Park
    • 1
  1. 1.Department of Ophthalmology and Visual ScienceSeoul St. Mary’s Hospital, College of Medicine, The Catholic University of KoreaSeoulKorea

Personalised recommendations