Japanese Journal of Ophthalmology

, Volume 57, Issue 3, pp 320–326 | Cite as

Vasodilatory effects of antivascular endothelium growth factor (VEGF) antibody, corticosteroid, and nitric oxide on the posterior ciliary arteries

  • Hideki ChumanEmail author
  • Naoko Kawano
  • Maki Kozawa
  • Nobuhisa Nao-i
Laboratory Investigation



The purpose of this study was to determine whether an antivascular endothelium growth factor (VEGF) antibody, a corticosteroid, and sodium nitroprusside (SNP) [a nitric oxide (NO) donor] are possible treatment agents for nonarteritic ischemic optic neuropathy (NAION) by clarifying their effects on high-K (potassium) solution-induced contraction in isolated rabbit and human posterior ciliary arteries (PCA).


Vascular ring segments were cut from the distal section of the PCA and mounted in a double-myograph system. After obtaining the maximal contraction following the administration of high-K solution, bevacizumab as an anti-VEGF antibody, methylprednisolone as a corticosteroid, and SNP were administered separately. When a vasodilatory effect was observed, carboxy-PTIO (a NO scavenger) or l-NAME (a NO synthase inhibitor) was administered.


Bevacizumab did not relax either the rabbit or the human PCA, whereas methylprednisolone relaxed both. Neither carboxy-PTIO nor l-NAME inhibited methylprednisolone-induced relaxation. SNP relaxed the rabbit PCA. Carboxy-PTIO inhibited SNP-induced relaxation, but l-NAME did not. In the human PCA, the vasodilatory effect of SNP was present, but weaker than in the rabbit PCA.


A corticosteroid has NO-independent vasodilatory effects. Exogenous NO has a weak dilating effect in the human PCA. Therefore, corticosteroid could be effective for the treatment of NAION.


Anti-VEGF antibody Corticosteroid Nitric oxide Posterior ciliary artery Vasodilatory effect 


  1. 1.
    Arnold AC. Ischemic optic neuropathy. In: Miller NR, Newman NJ, editors. Walsh & Hoyt’s clinical neuro-ophthalmology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 349–84.Google Scholar
  2. 2.
    Sanders MD. Ischemic papillopathy. Trans Ophthalmol Soc UK. 1971;91:369–86.PubMedGoogle Scholar
  3. 3.
    Eagling EM, Sanders MD, Miller SH. Ischemic papillopathy: clinical and fluorescein angiographic review of forty cases. Br J Ophthalmol. 1974;58:990–1008.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayreh SS. Anterior ischemic optic neuropathy. II. Fundus on ophthalmoscopy and fluorescein angiography. Br J Ophthalmol. 1974;58:964–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Arnold AC, Hepler RS. Fluorescein angiography in acute anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;117:222–30.PubMedGoogle Scholar
  6. 6.
    Arnold AC, Badr M, Hepler RS. Fluorescein angiography in nonischemic optic neuropathy. Arch Ophthalmol. 1996;114:293–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Hayreh SS, Baines JAB. Occlusion of the posterior ciliary artery: III. Effects on the optic nerve head. Br J Ophthalmol. 1972;58:754–64.CrossRefGoogle Scholar
  8. 8.
    McLeod D, Marshal J, Kohner EM. Role of axonoplasmic transport in the pathophysiology of ischemic disc swelling. Br J Ophthalmol. 1980;64:247–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett JL, Thomas S, Olson JL, Mandava N. Treatment of nonarteritic anterior ischemic optic neuropathy with intravitreal bevacizumab. J Neuro Ophthalmol. 2007;27:238–40.CrossRefGoogle Scholar
  10. 10.
    Hayreh SS, Zimmerman MB. Nonarteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. Graefe’s Arch Clin Exp Ophthalmol. 2008;246(7):1029–46.CrossRefGoogle Scholar
  11. 11.
    Kollarits CR, Mccarthy RW, Corrie WS, Swann ER. Norepinephrine therapy of ischemic optic neuropathy. J Clin Neuroophthalmol. 1981;1:283–8.PubMedGoogle Scholar
  12. 12.
    Smith JL. Norepinephrine therapy of ischemic optic neuropathy. J Clin Neuroophthalmol. 1981;1:289–90.PubMedGoogle Scholar
  13. 13.
    Mulvany M, Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977;41:19–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng G, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.PubMedGoogle Scholar
  15. 15.
    Chuman H, Maekubo T, Oosako T, Kodama Y, Ishiai M, Nao-I N. Confirmation of rodent model of non-arteritic ischemic optic neuropathy and its electrophysiological evaluation. Jpn J Ophthalmol. 2012 [Epub ahead of print].Google Scholar
  16. 16.
    The Ischemic Optic Neuropathy Decompression Trial Research Group. Optic nerve decompression surgery for nonarteritic anterior ischemic optic neuropathy (NAION) is not effective and may be harmful. JAMA. 1995;273:625–32.CrossRefGoogle Scholar
  17. 17.
    Hsueh WA, Quinones MJ, Creager MA. Endothelium in insulin resistance and diabetes. Diabetes Rev. 1997;5:343–52.Google Scholar
  18. 18.
    Steinberg HO, Bayazeed B, Hook G, Johnson A, Cronin J, Baron AD. Endothelial dysfunction is associated with cholesterol levels in the high normal range in humans. Circulation. 1997;96:3287–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Celemajer DS, Sorensen KE, Geogakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993;88:2149–55.CrossRefGoogle Scholar
  20. 20.
    Hatake K, Wakabayashi I, Hishida S. Mechanism of inhibitory action of ethanol on endothelial-dependent relaxation in rat aorta. Eur J Pharmacol. 1993;238:441–4.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2012

Authors and Affiliations

  • Hideki Chuman
    • 1
    Email author
  • Naoko Kawano
    • 1
  • Maki Kozawa
    • 1
  • Nobuhisa Nao-i
    • 1
  1. 1.Department of Ophthalmology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan

Personalised recommendations