Comparison of the anterior ocular segment measurements using swept-source optical coherent tomography and a scanning peripheral anterior chamber depth analyzer

  • Toshie Furuya
  • Fumihiko Mabuchi
  • Tatsuya Chiba
  • Satoshi Kogure
  • Shigeo Tsukahara
  • Kenji Kashiwagi
Clinical Investigation

Abstract

Purpose

To compare the anterior ocular segment measurements of two non-contact devices, i.e., anterior segment swept-source optical coherence tomography (SS-OCT) and the scanning peripheral anterior chamber depth analyzer (SPAC), in patients with glaucoma.

Patients and methods

This was a cross-sectional study of glaucoma patients visiting the Yamanashi University Hospital. The consistency and correlation of various parameters were studied between the SS-OCT and SPAC measurements, including the central corneal thickness (CCT), the central anterior chamber depth (ACD), the trabecular–iris angle (TIA), the angle opening distance (AOD), the area of the recessed angle (ARA), and the trabecular–iris space area (TISA) from the SS-OCT measurements, and the CCT, central ACD, SPAC grade, and SPAC-evaluated anterior chamber angle (ACA) from the SPAC measurements.

Results

Seventy right eyes of 70 patients (27 men, 43 women) with glaucoma were enrolled in the study. The mean patient age was 65.9 ± 14.5 years. The CCT measurements by SS-OCT and the SPAC were 528.3 ± 32.0 and 516.1 ± 28.5 μm, respectively (P < 0.001). The central ACD measurements by SS-OCT and the SPAC were 2.39 ± 0.44 and 2.73 ± 0.50 mm, respectively (P < 0.001). The two devices showed a significant correlation in terms of the CCT measurements (R2 = 0.667, P < 0.0001) and the central ACD measurements (R2 = 0.86, P < 0.0001), but SS-OCT give a significantly shallower central ACD measurement and a thinner CCT measurement compared with the SPAC. AOD, TIA, TISA, and the ARA were all significantly correlated with the SPAC grade and the ACA. Consistency between the two devices was reduced among eyes with primary angle closure.

Conclusions

Based on our results, the SS-OCT and SPAC measurements of the anterior segment were significantly correlated, but the values cannot be considered to be directly interchangeable.

Keywords

Anterior chamber depth Corneal thickness Optical coherent tomography Angle openness Glaucoma 

References

  1. 1.
    Aung T, Nolan WP, Machin D, Seah SK, Baasanhu J, Khaw PT, et al. Anterior chamber depth and the risk of primary angle closure in 2 East Asian populations. Arch Ophthalmol. 2005;123:527–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Casson RJ, Baker M, Edussuriya K, Senaratne T, Selva D, Sennanayake S. Prevalence and determinants of angle closure in central Sri Lanka: the Kandy Eye Study. Ophthalmology. 2009;116:1444–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kurita N, Mayama C, Tomidokoro A, Aihara M, Araie M. Potential of the pentacam in screening for primary angle closure and primary angle closure suspect. J Glaucoma. 2009;18:506–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Lavanya R, Foster PJ, Sakata LM, Friedman DS, Kashiwagi K, Wong TY, et al. Screening for narrow angles in the singapore population: evaluation of new noncontact screening methods. Ophthalmology. 2008;115:1720–7, 7.e1-2.Google Scholar
  5. 5.
    Kashiwagi K, Abe K, Tsukahara S. Quantitative evaluation of changes in anterior segment biometry by peripheral laser iridotomy using newly developed scanning peripheral anterior chamber depth analyzer. Br J Ophthalmol. 2004;88:1035–40.Google Scholar
  6. 6.
    Kashiwagi K, Tateno Y, Kashiwagi F, Tsukahara S. Changes in anterior chamber depth due to contusion. Ophthalmic Res. 2009;42:193–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.PubMedGoogle Scholar
  8. 8.
    Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992;113:381–9.PubMedGoogle Scholar
  9. 9.
    Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.PubMedGoogle Scholar
  10. 10.
    Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119:1179–85.PubMedGoogle Scholar
  11. 11.
    Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Nolan WP, See JL, Chew PT, Friedman DS, Smith SD, Radhakrishnan S, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kashiwagi K, Kashiwagi K, Toda Y, Osada K, Tsumura T, Tsukahara S. A newly developed peripheral anterior chamber depth analysis system—principle, accuracy, and reproducibility. Br J Ophthalmol. 2004;88:1029–34.Google Scholar
  14. 14.
    Kashiwagi K, Shinbayashi E, Tsukahara S. Development of a fully automated peripheral anterior chamber depth analyzer and evaluation of its accuracy. J Glaucoma. 2006;15:388–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Kashiwagi K, Kashiwagi F, Hiejima Y, Tsukahara S. Finding cases of angle-closure glaucoma in clinic setting using a newly developed instrument. Eye. 2006;20:319–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Kashiwagi K, Tsukahara S. Case finding of angle closure glaucoma in public health examination with scanning peripheral anterior chamber depth analyzer. J Glaucoma. 2007;16:589–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Nissirios N, Ramos-Esteban J, Danias J. Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents. Graefes Arch Clin Exp Ophthalmol. 2005;243:469–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Shaffer RN. A suggested anatomic classification to define the pupillary block glaucomas. Invest Ophthalmol. 1973;12:540–2.PubMedGoogle Scholar
  19. 19.
    Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.PubMedGoogle Scholar
  20. 20.
    Fu J, Li SN, Wang XZ, Wu GW, Mu DP, Wang J, et al. Measurement of anterior chamber volume with rotating Scheimpflug camera and anterior segment optical coherence tomography. Chin Med J (Engl). 2010;123:203–7.Google Scholar
  21. 21.
    Leung CK, Li H, Weinreb RN, Liu J, Cheung CY, Lai RY, et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49:3469–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Doors M, Cruysberg LP, Berendschot TT, de Brabander J, Verbakel F, Webers CA, et al. Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation. Graefes Arch Clin Exp Ophthalmol. 2009;247:1139–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Dinc UA, Oncel B, Gorgun E, Yalvac IS. Assessment of anterior chamber angle using Visante OCT, slit-lamp OCT, and Pentacam. Eur J Ophthalmol. 2009;19(3):411–5Google Scholar
  24. 24.
    Fukuda S, Kawana K, Yasuno Y, Oshika T. Anterior ocular biometry using 3-dimensional optical coherence tomography. Ophthalmology. 2009;116:882–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Yazici AT, Bozkurt E, Alagoz C, Alagoz N, Pekel G, Kaya V, et al. Central corneal thickness, anterior chamber depth, and pupil diameter measurements using Visante OCT, Orbscan, and Pentacam. J Refract Surg. 2010;26:127–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Baikoff G, Jitsuo Jodai H, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg. 2005;31:1722–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Lavanya R, Teo L, Friedman DS, Aung HT, Baskaran M, Gao H, et al. Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:1023–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Liang J, Liu W, Xing X, Liu H, Zhao S, Ji J. Evaluation of the agreement between Pentacam and ultrasound biomicroscopy measurements of anterior chamber depth in Chinese patients with primary angle-closure glaucoma. Jpn J Ophthalmol. 2010;54:361–2.PubMedCrossRefGoogle Scholar
  29. 29.
    Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107:2092–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000;107:2300–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Dinc U, Oncel B, Gorgun E, Alimgil L. Quantitative assessment of anterior chamber volume using slit-lamp OCT and Pentacam. Eur J Ophthalmol. 2009;19:411–5.PubMedGoogle Scholar
  32. 32.
    Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–441.Google Scholar
  33. 33.
    Kashiwagi K, Tsumura T, Tsukahara S. Comparison between newly developed scanning peripheral anterior chamber depth analyzer and conventional methods of evaluating anterior chamber configuration. J Glaucoma. 2006;15:380–7.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2011

Authors and Affiliations

  • Toshie Furuya
    • 1
  • Fumihiko Mabuchi
    • 1
  • Tatsuya Chiba
    • 1
  • Satoshi Kogure
    • 2
  • Shigeo Tsukahara
    • 1
  • Kenji Kashiwagi
    • 1
    • 3
  1. 1.Department of Ophthalmology Interdisciplinary School of Medicine and EngineeringUniversity of YamanashiChuoJapan
  2. 2.Kogure Eye ClinicShowaJapan
  3. 3.Department of Community and Family Medicine, Interdisciplinary School of Medicine and EngineeringUniversity of YamanashiChuoJapan

Personalised recommendations