Japanese Journal of Ophthalmology

, Volume 55, Issue 1, pp 57–61 | Cite as

Evaluation of NLRP1 gene polymorphisms in Vogt-Koyanagi-Harada disease

  • Yukihiro HorieEmail author
  • Wataru Saito
  • Nobuyoshi Kitaichi
  • Toshie Miura
  • Susumu Ishida
  • Shigeaki Ohno
Laboratory Investigation



Polymorphisms of the NACHT [neuronal apoptosis inhibitory protein (NAIP), CIITA, HET-E, TP1] and leucine-rich repeat protein 1 (NLRP1) gene are reported to be associated with susceptibility to vitiligo and several autoimmune diseases. Vogt-Koyanagi-Harada (VKH) disease is an autoimmune disorder affecting melanocytes in the skin, eyes, inner ear, and meninges. In this study, genetic associations between VKH disease and single-nucleotide polymorphisms (SNPs) surrounding the NLRP1 gene were investigated.


Six SNPs (rs6502867, rs925597, rs3926687, rs2733359, rs878329, and rs4790796) near the NLRP1 gene, including noncoding regions, were sequenced by a direct method to genotype 167 Japanese patients with VKH disease and 187 healthy Japanese volunteers.


None of the six SNPs in the NLRP1 region were significantly associated with disease susceptibility or the ocular, neurological, and dermatological manifestations of VKH.


Although skin manifestations are clinically similar between vitiligo and VKH disease, the genetic and immunological mechanisms of these two diseases may be different.


NALP1 single-nucleotide polymorphism uveitis Vogt-Koyanagi-Harada disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkhateeb A, Fain PR, Thody A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 2003;16:208–214.CrossRefPubMedGoogle Scholar
  2. 2.
    Laberge G, Mailloux CM, Gowan K, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res, 2005;18:300–305.CrossRefPubMedGoogle Scholar
  3. 3.
    Gregersen PK. Modern genetics, ancient defenses, and potential therapies. N Engl J Med 2007;356:1263–1266.CrossRefPubMedGoogle Scholar
  4. 4.
    Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007;356:1216–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Goto H, Mochizuki M, Yamaki K, et al. Epidemiological survey of intraocular inflammation in Japan. Jpn J Ophthalmol 2007;51:41–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Kitamei H, Kitaichi N, Namba K, et al. Clinical features of intraocular inflammation in Hokkaido, Japan. Acta Ophthalmol 2009;87:424–428.CrossRefPubMedGoogle Scholar
  7. 7.
    Yamaki K, Gocho K, Hayakawa K, et al. Tyrosinase family proteins are antigens specific to Vogt-Koyanagi-Harada disease. J Immunol 2000;165:7323–7329.PubMedGoogle Scholar
  8. 8.
    Kitamura M, Takami K, Kitaichi N, et al. Comparative study of two sets of criteria for the diagnosis of Vogt-Koyanagi-Harada’s disease. Am J Ophthalmol 2005;139:1080–1085.CrossRefPubMedGoogle Scholar
  9. 9.
    Read RW, Holland GN, Rao NA, et al. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 2001;131:647–652.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamaki K, Takiyama N, Itho N, et al. Experimentally induced Vogt-Koyanagi-Harada disease in two Akita dogs. Exp Eye Res 2005;80:273–280.CrossRefPubMedGoogle Scholar
  11. 11.
    Horie Y, Takemoto Y, Miyazaki A, et al. Tyrosinase gene family and Vogt-Koyanagi-Harada disease in Japanese patients. Mol Vis 2006;12:1601–1605.PubMedGoogle Scholar
  12. 12.
    Islam SM, Numaga J, Fujino Y, et al. HLA class II genes in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 1994; 35:3890–3896.PubMedGoogle Scholar
  13. 13.
    Lerner AB. Vitiligo. J Invest Dermatol 1959;32:285–310.CrossRefPubMedGoogle Scholar
  14. 14.
    Lambe T, Leung JC, Bouriez-Jones T, et al. CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions. J Immunol 2006;177:3055–3062.PubMedGoogle Scholar
  15. 15.
    Ongenae K, Van Geel N, Naeyaert JM. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res 2003;16:90–100.CrossRefPubMedGoogle Scholar
  16. 16.
    Das PK, van den Wijngaard RM, Wankowicz-Kalinska A, et al. A symbiotic concept of autoimmunity and tumour immunity: lessons from vitiligo. Trends Immunol 2001;22:130–136.CrossRefPubMedGoogle Scholar
  17. 17.
    Le Poole IC, van den Wijngaard RM, Westerhof W, et al. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 1996;148:1219–1228.PubMedGoogle Scholar
  18. 18.
    Palermo B, Campanelli R, Garbelli S, et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 2001;117:326–332.CrossRefPubMedGoogle Scholar
  19. 19.
    Wankowicz-Kalinska A, Le Poole C, van den Wijngaard R, et al. Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin? Pigment Cell Res 2003;16:254–260.CrossRefPubMedGoogle Scholar
  20. 20.
    Prignano F, Betts CM, Lotti T. Vogt-Koyanagi-Harada disease and vitiligo: where does the illness begin? J Electron Microsc (Tokyo) 2008;57:25–31.CrossRefGoogle Scholar
  21. 21.
    Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001;411:599–603.CrossRefPubMedGoogle Scholar
  22. 22.
    Church LD, Cook GP, McDermott MF. Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol 2008;4:34–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Spiotto MT, Yu P, Rowley DA, et al. Increasing tumor antigen expression overcomes “ignorance“ to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002;17:737–747.CrossRefPubMedGoogle Scholar
  24. 24.
    Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003;198:569–580.CrossRefPubMedGoogle Scholar
  25. 25.
    Phan GQ, Attia P, Steinberg SM, et al. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 2001;19:3477–3482.PubMedGoogle Scholar
  26. 26.
    Taieb A. NALP1 and the inflammasomes: challenging our perception of vitiligo and vitiligo-related autoimmune disorders. Pigment Cell Res 2007;20:260–262.CrossRefPubMedGoogle Scholar
  27. 27.
    van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, et al. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 2000;80:1299–1309.Google Scholar
  28. 28.
    Kitaichi N, Matoba H, Ohno S. The positive role of lumbar puncture in the diagnosis of Vogt-Koyanagi-Harada disease: lymphocyte subsets in the aqueous humor and cerebrospinal fluid. Int Ophthalmol 2007;27:97–103.CrossRefPubMedGoogle Scholar
  29. 29.
    Moorthy RS, Inomata H, Rao NA. Vogt-Koyanagi-Harada syndrome. Surv Ophthalmol 1995;39:265–292.CrossRefPubMedGoogle Scholar
  30. 30.
    Kitaichi N, Horie Y, Ohno S. Prompt therapy reduces the duration of systemic corticosteroids in Vogt-Koyanagi-Harada disease. Graefes Arch Clin Exp Ophthalmol 2008;246:1641–1642.CrossRefPubMedGoogle Scholar
  31. 31.
    Ohno S, Char DH, Kimura SJ, et al. Vogt-Koyanagi-Harada syndrome. Am J Ophthalmol 1977;83:735–740.PubMedGoogle Scholar
  32. 32.
    Andreoli CM, Foster CS. Vogt-Koyanagi-Harada disease. Int Ophthalmol Clin 2006;46:111–122.CrossRefPubMedGoogle Scholar
  33. 33.
    Horie Y, Kitaichi N, Takemoto Y, et al. Polymorphism of IFN-gamma gene and Vogt-Koyanagi-Harada disease. Mol Vis 2007;13:2334–2338.PubMedGoogle Scholar
  34. 34.
    Du L, Yang P, Hou S, et al. Association of the CTLA-4 gene with Vogt-Koyanagi-Harada syndrome. Clin Immunol 2008;127: 43–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Hou S, Yang P, Du L, et al. Small ubiquitin-like modifier 4 (SUMO4) polymorphisms and Vogt-Koyanagi-Harada (VKH) syndrome in the Chinese Han population. Mol Vis 2008;14:2597–2603.PubMedGoogle Scholar
  36. 36.
    Meng Q, Liu X, Yang P, et al. PDCD1 genes may protect against extraocular manifestations in Chinese Han patients with Vogt-Koyanagi-Harada syndrome. Mol Vis 2009;15:386–392.PubMedGoogle Scholar
  37. 37.
    Hou S, Yang P, Xie L, et al. Monocyte chemoattractant protein (MCP)-1 -2518 A/G SNP in Chinese Han patients with VKH syndrome. Mol Vis 2009;15:1537–1541.PubMedGoogle Scholar
  38. 38.
    Horie Y, Kitaichi N, Katsuyama Y, et al. Evaluation of PTPN22 polymorphisms and Vogt-Koyanagi-Harada disease in Japanese patients. Mol Vis 2009;15:1115–1119.PubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society (JOS) 2011

Authors and Affiliations

  • Yukihiro Horie
    • 1
    • 4
    Email author
  • Wataru Saito
    • 1
  • Nobuyoshi Kitaichi
    • 2
  • Toshie Miura
    • 1
  • Susumu Ishida
    • 1
  • Shigeaki Ohno
    • 3
  1. 1.Department of OphthalmologyHokkaido University Graduate School of MedicineSapporoJapan
  2. 2.Department of OphthalmologyHealth Sciences University of HokkaidoSapporoJapan
  3. 3.Department of Ocular Inflammation and ImmunologyHokkaido University Graduate School of MedicineSapporoJapan
  4. 4.Department of OphthalmologyHokkaido University Graduate School of MedicineSapporoJapan

Personalised recommendations