Advertisement

Japanese Journal of Ophthalmology

, Volume 54, Issue 1, pp 32–35 | Cite as

Oscillatory potentials with repeated-flash electroretinography

  • Kazuki KuniyoshiEmail author
  • Motohiro Irifune
  • Naoki Uno
  • Akira Nakao
  • Yoshikazu Shimomura
Clinical Investigation
  • 82 Downloads

Abstract

Purpose

To study the influence of retinal adaptation on oscillatory potential (OP) using repeated-flash electroretinography.

Methods

Subjects were 28 adult eyes with normal retinas. Four stimuli (four flashes) of white light from a light-emitting diode built into a contact lens that also served as the recording electrode were presented at 5-s intervals after 30 min of dark adaptation (DA) and then after 10 min of light adaptation (LA). Recordings were made without background light.

Results

Four OPs (O1, O2, O3, and O4) were recordable. After DA, amplitudes of O1 and O4 decreased with subsequent flashes, whereas those of O2 increased after the second flash. After LA, amplitudes of O3 and O4 were smaller than after DA.

Conclusions

Amplitude and implicit time of OPs were influenced by retinal adaptation. Among all OPs, O2 showed unique characteristics in course of retinal adaptation.

Keywords

dark adaptation electroretinogram light adaptation oscillatory potentials repeated-flash ERG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodt E. Beiträge zur Elektrophysiologie des Auges. II. Mitteilung. Über Hemmungsvorgänge in der menschlichen Retina. Graefes Arch Ophthalmol 1952;153:152–162.CrossRefGoogle Scholar
  2. 2.
    Mahneke A. Electroretinography with double flashes. Acta Ophthalmol 1957;35:131–141.Google Scholar
  3. 3.
    Burian HM, Spivey BE. The effect of twin flashes and of repetitive light stimuli on the human electroretinogram. Am J Ophthalmol 1959;48:274–286.PubMedGoogle Scholar
  4. 4.
    Algvere P, Westbeck S. Human ERG in response to double flashes of light during the course of dark adaptation: a Fourier analysis of the oscillatory potentials. Vision Res 1972;12:195–214.CrossRefPubMedGoogle Scholar
  5. 5.
    Algvere P, Wachtmeister L, Westbeck S. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis. Acta Ophthalmol 1972;50:737–759.CrossRefGoogle Scholar
  6. 6.
    Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. IV. Effect of adaptation to short flashes of light. Time interval and intensity of conditioning flashes. A Fourier analysis. Acta Ophthalmol 1972;50:250–269.Google Scholar
  7. 7.
    Gjötterberg M. Double flash human electroretinogram with special reference to the oscillatory potentials and the early phase of dark adaptation: a normative study. Acta Ophthalmol 1974;52:291–304.CrossRefGoogle Scholar
  8. 8.
    Kooijman AC, Zwarts J, Damhof A. Double-flash electroretinography in human eyes. Doc Ophthalmol 1990;73:377–385.CrossRefGoogle Scholar
  9. 9.
    Saeki M, Gouras P. Cone ERGs to flash trains: the antagonism of a later flash. Vision Res 1996;36:3229–3235.CrossRefPubMedGoogle Scholar
  10. 10.
    Bornschein H, Gunter R. The double-flash ERG in retinal ischemia. Vision Res 1964;4:423–432.CrossRefPubMedGoogle Scholar
  11. 11.
    Elenius V. Double-flash ERG in central serous retinopathy. Acta Ophthalmol 1968;46:976–979.CrossRefGoogle Scholar
  12. 12.
    Gliem H, Möller DE, Kietzmann G. Das Doppelblitz-ERG bei der diabetischen Retinopathie. Acta Ophthalmol 1973;51:85–94.CrossRefGoogle Scholar
  13. 13.
    Mitsuyu M, Honda Y, Negi A. Application of twin flash stimuli for some macular diseases. Isolation of local responses by twin flashes. Acta Ophthalmol 1980;58:688–696.CrossRefGoogle Scholar
  14. 14.
    Peachey NS, Alexander KR, Fishman GA. Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash effect. Vision Res 1987;27:859–866.CrossRefPubMedGoogle Scholar
  15. 15.
    Bartz-Schmidt KU, Brunner R, Esser P, Lüke C, Walter P, Sickel W. The triple flash electroretinogram and its significance in macular diseases. B-wave recovery as a diagnostic tool. Graefes Arch Clin Exp Ophthalmol 1996;234:604–611.CrossRefPubMedGoogle Scholar
  16. 16.
    DeMolfetta V, Spinelli D, Polenghi F. Behavior of electroretinographic oscillatory potentials during adaptation to darkness. Arch Ophthalmol 1968;79:531–535.PubMedGoogle Scholar
  17. 17.
    Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. Acta Ophthalmol suppl. 1972;116:1–32.PubMedGoogle Scholar
  18. 18.
    Rousseau S, Lachapelle P. The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials. Doc Ophthalmol 1999;99:135–150.CrossRefPubMedGoogle Scholar
  19. 19.
    Kuze M, Uji Y. Changes in electroretinogram oscillatory potentials during dark adaptation. Jpn J Ophthalmol 2005;49:420–422.CrossRefPubMedGoogle Scholar
  20. 20.
    Granit R, Munsterhjelm A. The electrical responses of dark adapted frogs’ eyes to monochromatic stimuli. J Physiol 1937;88:436–458.PubMedGoogle Scholar
  21. 21.
    Cobb WA, Morton HB. A new component of the human electroretinogram. J Physiol 1954;123suppl.: 36–37.Google Scholar
  22. 22.
    Yonemura D, Hatta M. Studies of the minor components of the frog’s electroretinogram. Jpn J Physiol 1966;16:11–22.Google Scholar
  23. 23.
    Heynen H, Wachtmeister L, van Norren D. Origin of the oscillatory potentials in the primate retina. Vision Res 1985;25:1365–1373.CrossRefPubMedGoogle Scholar
  24. 24.
    Korol S, Leuenberger PM, Englert U, Babel J. In vivo effects of glycine on retinal ultrastructure and averaged electroretinogram. Brain Res 1975;97:235–251.CrossRefPubMedGoogle Scholar
  25. 25.
    Ogden TE. The oscillatory waves of the primate electroretinogram. Vision Res 1973;13:1059–1074.CrossRefPubMedGoogle Scholar
  26. 26.
    Wachtmeister L, Dowling JE. The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 1978;17:1176–1188.PubMedGoogle Scholar
  27. 27.
    Yanagida T, Koshimizu M, Kawasaki K, Yonemura D. Microelectrode depth study of the electroretinographic oscillatory potentials in the frog retina. Doc Ophthalmol 1988;67:355–361.CrossRefGoogle Scholar
  28. 28.
    King-Smith PE, Loffing DH, Jones R. Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 1986;27:270–273.PubMedGoogle Scholar
  29. 29.
    Genest AA. Oscillatory potentials in the electroretinogram of the normal human eye. Vision Res 1964;4:595–604.CrossRefPubMedGoogle Scholar
  30. 30.
    Algvere P, Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. II. Effect of adaptation to background light and subsequent recovery in the dark. A Fourier analysis. Acta Ophtalmol 1972;50:837–862.CrossRefGoogle Scholar
  31. 31.
    Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. III. Thresholds and relation to stimulus intensity on adaptation to background light. Acta Ophtalmol 1973;51:95–113.CrossRefGoogle Scholar
  32. 32.
    Coupland SG. Oscillatory potential changes related to stimulus intensity and light adaptation. Doc Ophthalmol 1987;66:195–205.CrossRefPubMedGoogle Scholar
  33. 33.
    Peachey NS, Alexander KR, Derlacki DJ, Bobak P, Fishman GA. Effects of light adaptation on the response characteristics of human oscillatory potentials. Electroencephalogr Clin Neurophysiol 1991;78:27–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Wachtmeister L. Luminosity functions of the oscillatory potentials of the human electroretinogram. Acta Ophthalmol 1974;52:353–366.CrossRefGoogle Scholar
  35. 35.
    Wachtmeister L. Incremental thresholds of the oscillatory potentials of the human electroretinogram in response to coloured light. Acta Ophthalmol 1974;52:378–389.CrossRefGoogle Scholar
  36. 36.
    Janáky M, Goupland SG, Benedek G. Human oscillatory potentials: components of rod origin. Ophthalmologica 1996;210:315–318.PubMedCrossRefGoogle Scholar
  37. 37.
    Tremblay F, Lam SR. Distinct electroretinographic oscillatory potential generators as revealed by field distribution. Doc Ophthalmol 1993;84:279–289.CrossRefPubMedGoogle Scholar
  38. 38.
    Irifune M. Evaluation of ERGs recorded in patients with diabetic retinopathy and maculopathy. Med J Kinki Univ 2002;27:149–163.Google Scholar

Copyright information

© Japanese Ophthalmological Society (JOS) 2010

Authors and Affiliations

  • Kazuki Kuniyoshi
    • 1
    • 2
    Email author
  • Motohiro Irifune
    • 1
  • Naoki Uno
    • 1
  • Akira Nakao
    • 1
  • Yoshikazu Shimomura
    • 1
  1. 1.Department of OphthalmologyKinki University School of MedicineOsakaJapan
  2. 2.Department of OphthalmologyKinki University School of MedicineOsakaJapan

Personalised recommendations