Advertisement

Japanese Journal of Ophthalmology

, Volume 53, Issue 4, pp 345–351 | Cite as

Functional imaging using the retinal function imager: Direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals

  • David Izhaky
  • Darin A. Nelson
  • Zvia Burgansky-Eliash
  • Amiram Grinvald
Review

Abstract

The Retinal Function Imager (RFI; Optical Imaging, Rehovot, Israel) is a unique, noninvasive multiparameter functional imaging instrument that directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, and metabolic responses to photic activation. In addition, it allows capillary perfusion mapping without any contrast agent. These parameters of retinal function are degraded by retinal abnormalities. This review delineates the development of these parameters and demonstrates their clinical applicability for noninvasive detection of retinal function in several modalities. The results suggest multiple clinical applications for early diagnosis of retinal diseases and possible critical guidance of their treatment.

Key Words

blood flow functional intrinsic signal metabolic responses oximetry perfusion maps retinal imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10384_2009_689_MOESM1_ESM.zip (3.3 mb)
Movie: retinal flow in normal eye

References

  1. 1.
    Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003;21:1361–1367.PubMedCrossRefGoogle Scholar
  2. 2.
    Trick GL, Calotti FY, Skarf B. Advances in imaging of the optic disc and retinal nerve fiber layer. J Neuroophthalmol 2006;26:284–295.PubMedGoogle Scholar
  3. 3.
    Singh R, Kaiser PK. Advances in AMD imaging. Int Ophthalmol Clin 2007;47:65–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27:45–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging: review and perspectives. Retina 2008;28:385–409.PubMedCrossRefGoogle Scholar
  6. 6.
    Podoleanu AG, Rosen RB. Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res 2008;27:464–499.PubMedCrossRefGoogle Scholar
  7. 7.
    Grinvald A, Bonhoeffer T, Vanzetta I, et al. High-resolution functional optical imaging: from the neocortex to the eye. Ophthalmol Clin North Am 2004;17:53–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 2005;36:57–66.PubMedGoogle Scholar
  9. 9.
    Denninghoff KR, Smith MH, Hillman L. Retinal imaging techniques in diabetes. Diabetes Technol Ther 2000;2:111–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris A, Dinn RB, Kagemann L, Rechtman E. A review of methods for human retinal oximetry. Ophthalmic Surg Lasers Imaging 2003;34:152–164.PubMedGoogle Scholar
  11. 11.
    Blum M, Bachmann K, Wintzer D, Riemer T, Vilser W, Strobel J. Noninvasive measurement of the Bayliss effect in retinal autoregulation. Graefes Arch Clin Exp Ophthalmol 1999;237:296–300.PubMedCrossRefGoogle Scholar
  12. 12.
    Hubbard LD, Brothers RJ, King WN, et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 1999;106:2269–2280.PubMedCrossRefGoogle Scholar
  13. 13.
    Ege BM, Hejlesen OK, Larsen OV, et al. Screening for diabetic retinopathy using computer based image analysis and statistical classification. Comput Methods Programs Biomed 2000;62:165–175.PubMedCrossRefGoogle Scholar
  14. 14.
    van Hecke MV, Dekker JM, Nijpels G, et al. Are retinal microvascular abnormalities associated with large artery endothelial dysfunction and intima-media thickness? The Hoorn Study. Clin Sci (Lond) 2006;110:597–604.CrossRefGoogle Scholar
  15. 15.
    Stanton AV, Wasan B, Cerutti A, et al. Vascular network changes in the retina with age and hypertension. J Hypertens 1995;13(12 Pt 2):1724–1728.PubMedGoogle Scholar
  16. 16.
    van den Born BJ, Hulsman CA, Hoekstra JB, Schlingemann RO, van Montfrans GA. Value of routine funduscopy in patients with hypertension: systematic review. BMJ 2005;331:73.PubMedCrossRefGoogle Scholar
  17. 17.
    Landa G, Garcia PM, Rosen RB. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 2009;223:155–161.PubMedCrossRefGoogle Scholar
  18. 18.
    Kwan AS, Barry C, McAllister IL, Constable I. Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience. Clin Exp Ophthalmol 2006;34:33–38.CrossRefGoogle Scholar
  19. 19.
    Stefansson E, Landers MB 3rd, Wolbarsht ML. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg 1983;14:209–226.PubMedGoogle Scholar
  20. 20.
    Stefansson E, Machemer R, de Juan E Jr, McCuen BW 2nd, Peterson J. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol 1992;113:36–38.PubMedGoogle Scholar
  21. 21.
    Tiedeman JS, Kirk SE, Srinivas S, Beach JM. Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 1998;105:31–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Sebag J, Delori FC, Feke GT, Weiter JJ. Effects of optic atrophy on retinal blood flow and oxygen saturation in humans. Arch Ophthalmol 1989;107:222–226.PubMedGoogle Scholar
  23. 23.
    Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.PubMedCrossRefGoogle Scholar
  24. 24.
    Grinvald A, Sharon D, Vanzetta I, Slovin H. Intrinsic signal imaging in the neocortex. In: Yuste R, Konnerth A, editors. Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2005. p. xvi.Google Scholar
  25. 25.
    Grinvald A, Shoam D, Shmuel DE, et al. In-vivo optical imaging of cortical architecture and dynamics. Modern techniques in neuroscience research. Heidelberg: Springer; 1999.Google Scholar
  26. 26.
    Hill DK, Keynes RD. Opacity changes in stimulated nerve. J Physiol 1949;108:278–281.Google Scholar
  27. 27.
    Cohen LB, Keynes RD, Hille B. Light scattering and birefringence changes during nerve activity. Nature 1968;218:438–441.PubMedCrossRefGoogle Scholar
  28. 28.
    Cohen LB. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 1973;53:373–418.PubMedGoogle Scholar
  29. 29.
    Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 1990;87:6082–6086.PubMedCrossRefGoogle Scholar
  30. 30.
    Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 1996;272:551–554.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M. Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 2004;45:3820–3826.PubMedCrossRefGoogle Scholar
  32. 32.
    Abramoff MD, Kwon YH, Ts’o D, et al. Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 2006;47:715–721.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanazono G, Tsunoda K, Shinoda K, Tsubota K, Miyake Y, Tanifuji M. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Invest Ophthalmol Vis Sci 2007;48:2903–2912.PubMedCrossRefGoogle Scholar
  34. 34.
    Hanazono G, Tsunoda K, Kazato Y, Tsubota K, Tanifuji M. Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina. Invest Ophthalmol Vis Sci 2008;49:4655–4663.PubMedCrossRefGoogle Scholar
  35. 35.
    Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci 2008;49:713–719.PubMedCrossRefGoogle Scholar
  36. 36.
    Srinivasan VJ, Chen Y, Duker JS, Fujimoto JG. In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. Opt Exp 2009;17:3861–3877.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society (JOS) 2009

Authors and Affiliations

  • David Izhaky
    • 1
  • Darin A. Nelson
    • 1
  • Zvia Burgansky-Eliash
    • 1
    • 2
  • Amiram Grinvald
    • 3
    • 4
  1. 1.Optical Imaging LtdRehovotIsrael
  2. 2.Department of OphthalmologyEdith Wolfson Medical CenterHolonIsrael
  3. 3.Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
  4. 4.Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations