Japanese Journal of Ophthalmology

, Volume 53, Issue 4, pp 334–344 | Cite as

Noninvasive functional imaging of the retina reveals outer retinal and hemodynamic intrinsic optical signal origins

  • Daniel Ts’o
  • Jesse Schallek
  • Young Kwon
  • Randy Kardon
  • Michael Abramoff
  • Peter Soliz
Review

Abstract

We have adapted intrinsic signal optical imaging of neural activity to the noninvasive functional imaging of the retina. Results to date demonstrate the feasibility and potential of this new method of functional assessment of the retina. In response to visual stimuli, we have imaged reflectance changes in the retina that are robust and spatially colocalized to the sites of stimulation. However, the technique is in its infancy and many questions as to the underlying mechanisms remain. In particular, the source and nature of the activity-dependent intrinsic optical signals in the retina need to be characterized and their anatomic origins determined. The studies described here begin to address these issues. The evidence indicates that the imaged signals are driven by the outer retinal layers and have a dominant hemodynamic component.

Key Words

functional retinal imaging hemodynamics intrinsic signals optical imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.PubMedCrossRefGoogle Scholar
  2. 2.
    Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 1990;87:6082–6086.PubMedCrossRefGoogle Scholar
  3. 3.
    Ts’o DY, Frostig RD, Lieke EE, Grinvald A. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 1990;249:417–420.PubMedCrossRefGoogle Scholar
  4. 4.
    Haglund MM, Ojemann GA, Hochman DW. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 1992;358:668–671.PubMedCrossRefGoogle Scholar
  5. 5.
    Toga AW, Cannestra AF, Black KL. The temporal/spatial evolution of optical signals in human cortex. Cereb Cortex 1995;5:561–565.PubMedCrossRefGoogle Scholar
  6. 6.
    Cannestra AF, Blood AJ, Black KL, Toga AW. The evolution of optical signals in human and rodent cortex. Neuroimage 1996;3:202–208.PubMedCrossRefGoogle Scholar
  7. 7.
    Riva CE, Harino S, Shonat RD, Petrig BL. Flicker evoked increase in optic nerve head blood flow in anesthetized cats. Neurosci Lett 1991;128:291–296.PubMedCrossRefGoogle Scholar
  8. 8.
    Linsenmeier RA. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 1986;88:521–542.PubMedCrossRefGoogle Scholar
  9. 9.
    Hogeboom van Buggenum IM, van der Heijde GL, Tangelder GJ, Reichert-Thoen JW. Ocular oxygen measurement. Brit J Ophthalmol 1996;80:567–573.CrossRefGoogle Scholar
  10. 10.
    Schmidt M, Giessl A, Laufs T, Hankeln T, Wolfrum U, Burmester T. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J Biol Chem 2003;278:1932–1935.PubMedCrossRefGoogle Scholar
  11. 11.
    Hood DC, Frishman LJ, Viswanathan S, Robson JG, Ahmed J. Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque. Vis Neurosci 1999;16:411–416.PubMedCrossRefGoogle Scholar
  12. 12.
    Hare WA, Ton H. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Doc Ophthalmol 2002;105:189–222.PubMedCrossRefGoogle Scholar
  13. 13.
    Slaughter MM, Miller RF. 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 1981;211:182–185.PubMedCrossRefGoogle Scholar
  14. 14.
    Slaughter M, Miller R. An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science 1983;219:1230–1232.PubMedCrossRefGoogle Scholar
  15. 15.
    Shmuel A, Augath M, Oeltermann A, Logothetis NK. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 2006;9:569–577.PubMedCrossRefGoogle Scholar
  16. 16.
    Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 2002;36:1195–1210.PubMedCrossRefGoogle Scholar
  17. 17.
    Abramoff MD, Kwon YH, Ts’o D, et al. Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 2006;47:715–721.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M. Mapping coneand rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 2004;45:3820–3826.PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson DA, Krupsky S, Pollack A, et al. Noninvasive multiparameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 2005;36:57–66.PubMedGoogle Scholar
  20. 20.
    Hanazono G, Tsunoda K, Shinoda K, Tsubota K, Miyake Y, Tanifuji M. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Invest Ophthalmol Vis Sci 2007;48:2903–2912.PubMedCrossRefGoogle Scholar
  21. 21.
    Okawa Y, Fujikado T, Miyoshi T, Hirohara Y, Mihashi T, Tano Y. Contribution of retinal ganglion cell activity to intrinsic signals. Invest Ophthalmol Vis Sci 2007;48:3845.Google Scholar
  22. 22.
    Duong TQ, Ngan S-C, Ugurbil K, Kim S-G. Functional magnetic resonance imaging of the retina. Invest Ophthalmol Vis Sci 2002;43:1176–1181.PubMedGoogle Scholar
  23. 23.
    Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA. Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol 2007;293:H1696–H1704.PubMedCrossRefGoogle Scholar
  24. 24.
    Yao XC, George JS. Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals. Neuroimage 2006;33:898–906.PubMedCrossRefGoogle Scholar
  25. 25.
    Cohen LB. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 1973;53:373–418.PubMedGoogle Scholar
  26. 26.
    Schallek JB, Li H, Kardon RH, et al. Stimulus-evoked intrinsic optical signals in the retina: spatial and temporal characteristics. Invest Ophthalmol Vis Sci 2009 (in press).Google Scholar
  27. 27.
    Schallek JB, Kardon RH, Kwon YH, Abramoff MD, Soliz P, Ts’o D. Stimulus-evoked intrinsic optical signals in the retina: pharmacological dissection reveals outer retinal origins. Invest Ophthalmol Vis Sci 2009 (in press).Google Scholar

Copyright information

© Japanese Ophthalmological Society (JOS) 2009

Authors and Affiliations

  • Daniel Ts’o
    • 1
    • 5
  • Jesse Schallek
    • 1
  • Young Kwon
    • 2
  • Randy Kardon
    • 2
    • 3
  • Michael Abramoff
    • 2
    • 3
  • Peter Soliz
    • 4
  1. 1.Department of NeurosurgerySUNY Upstate Medical UniversitySyracuseUSA
  2. 2.Department of Ophthalmology and Visual ScienceUniversity of IowaIowa CityUSA
  3. 3.Veterans AdministrationIowa CityUSA
  4. 4.VisionQuest BiomedicalAlbuquerqueUSA
  5. 5.Department of NeurosurgerySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations