Japanese Journal of Ophthalmology

, Volume 52, Issue 2, pp 91–98 | Cite as

Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase

  • Junko Kami
  • Kimimasa Muranaka
  • Yasuo Yanagi
  • Ryo Obata
  • Yasuhiro Tamaki
  • Masabumi Shibuya
Laboratory Investigation



To investigate the role played by receptors of vascular endothelial growth factors, Flt-1 and KDR/Flk-1, on an experimental model of choroidal neovascularization (CNV).


The vascular endothelial growth factor-A (VEGF-A) receptor-specific tyrosine kinase inhibitor SU5416 was administered to a laser-induced mouse model of CNV. The formation of CNV and the degree of vascular permeability in Flt-1 tyrosine kinase domain-deficient mice were also investigated.


SU5416 reduced vascularity and vascular endothelial cell proliferation, and promoted endothelial cell apoptosis within CNV. Furthermore, the formation of CNV and the degree of vascular permeability were significantly reduced in Flt-1 tyrosine kinase domain-deficient mice, and this effect was enhanced by the administration of SU5416.


Both Flt-1 and KDR/Flk-1 have a significant role in CNV formation. Suppression of apoptosis may be involved in the process.

Key Words

apoptosis choroidal neovascularization SU5416 tyrosine kinase receptor-1 vascular endothelial growth factor-A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leibowitz HM, Krueger DE, Maunder LR, et al. The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol 1980;24:335–610.CrossRefPubMedGoogle Scholar
  2. 2.
    Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.CrossRefPubMedGoogle Scholar
  3. 3.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Kvanta A. Expression and regulation of vascular endothelial growth factor in choroidal fibroblasts. Curr Eye Res 1995;14:1015–1020.CrossRefPubMedGoogle Scholar
  5. 5.
    Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994;35:3178–3188.PubMedGoogle Scholar
  6. 6.
    Yi X, Ogata N, Komada M, et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 1997;235:313–319.CrossRefPubMedGoogle Scholar
  7. 7.
    Wada M, Ogata N, Otsuji T, Uyama M. Expression of vascular endothelial growth factor and its receptor (KDR/flk-1) mRNA in experimental choroidal neovascularization. Curr Eye Res 1999;18:203–213.CrossRefPubMedGoogle Scholar
  8. 8.
    Iwashita K, Takahashi K, Wada M, Uyama M. Vascular endothelial growth factor promotes experimental choroidal neovascularization in monkey eyes (in Japanese with English abstract). Nippon Ganka Gakkai Zasshi (J Jpn Ophthalmol Soc) 1999;103:415–424.Google Scholar
  9. 9.
    Kwak N, Okamoto N, Wood JM, Campochiaro PA. VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2000;41:3158–3164.PubMedGoogle Scholar
  10. 10.
    Cui JZ, Kimura H, Spee C, et al. Natural history of choroidal neovascularization induced by vascular endothelial growth factor in the primate. Graefes Arch Clin Exp Ophthalmol 2000;238:326–333.CrossRefPubMedGoogle Scholar
  11. 11.
    Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273:30336–30343.CrossRefPubMedGoogle Scholar
  12. 12.
    Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273:13313–13316.CrossRefPubMedGoogle Scholar
  13. 13.
    Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995;1:1024–1028.CrossRefPubMedGoogle Scholar
  14. 14.
    Shibuya M, Ito N, Claesson-Welsh L. Structure and function of VEGF Receptor-1 and-2. Curr Topics Microbiol Immunol 1999;237:59–83.Google Scholar
  15. 15.
    Seetharam L, Gotoh N, Maru Y, et al. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995;10:135–147.PubMedGoogle Scholar
  16. 16.
    Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt-1, two receptors for vascular endothelial growth factor. J Biol Chem 1994;269:26988–26995.PubMedGoogle Scholar
  17. 17.
    Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001;20:2768–2778.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8:831–840.CrossRefPubMedGoogle Scholar
  19. 19.
    Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 1998;95:9349–9354.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hiratsuka S, Maru Y, Okada A, et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001;61:1207–1213.PubMedGoogle Scholar
  21. 21.
    Itokawa T, Nokihara H, Nishioka Y, et al. Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. Mol Cancer Ther 2002;1:295–302.PubMedGoogle Scholar
  22. 22.
    Takeda A, Hata Y, Shiose S, et al. Suppression of experimental choroidal neovascularization utilizing KDR selective receptor tyrosine kinase inhibitor. Graefes Arch Clin Exp Ophthalmol 2003;241:765–772.CrossRefPubMedGoogle Scholar
  23. 23.
    Dobi ET, Puliafito CA, Destro M. A new model of experimental choroidal neovascularization in the rat. Arch Ophthalmol 1989;107:264–269.CrossRefPubMedGoogle Scholar
  24. 24.
    Yanagi Y, Tamaki Y, Obata R, et al. Subconjunctival administration of bucillamine suppresses choroidal neovascularization in rat. Invest Ophthalmol Vis Sci 2002;43:3495–3499.PubMedGoogle Scholar
  25. 25.
    Takehana Y, Kurokawa T, Kitamura T, et al. Suppression of laser-induced choroidal neovascularization by oral tranilast in the rat. Invest Ophthalmol Vis Sci 1999;40:459–466.PubMedGoogle Scholar
  26. 26.
    Yanagi Y, Tamaki Y, Inoue Y, et al. Subconjunctival doxifluridine administration suppresses rat choroidal neovascularization through activated thymidine phosphorylase. Invest Ophthalmol Vis Sci 2003;44:751–754.CrossRefPubMedGoogle Scholar
  27. 27.
    Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996;114:66–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999;59:99–106.PubMedGoogle Scholar
  29. 29.
    Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.CrossRefPubMedGoogle Scholar
  30. 30.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995;146:1029–1039.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Gupta K, Ramakrishnan S, Browne PV, Solovey A, Hebbel RP. A novel technique for culture of human dermal microvascular endothelial cells under either serum-free or serum-supplemented conditions: isolation by panning and stimulation with vascular endothelial growth factor. Exp Cell Res 1997;230:244–251.CrossRefPubMedGoogle Scholar
  33. 33.
    Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 1995;92:10457–10461.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seo MS, Kwak N, Ozaki H, et al. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am J Pathol 1999;154:1743–1753.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Krzystolik MG, Afshari MA, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal antivascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002;120:338–346.CrossRefPubMedGoogle Scholar
  36. 36.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.CrossRefPubMedGoogle Scholar
  37. 37.
    Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994;118:445–450.CrossRefPubMedGoogle Scholar
  38. 38.
    Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 1995;113:1538–1544.CrossRefPubMedGoogle Scholar
  39. 39.
    Nozaki M, Sakurai E, Raisler BJ, et al. Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A. J Clin Invest 2006;116:422–429.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rakic JM, Lambert V, Devy L, et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:3186–3193.CrossRefPubMedGoogle Scholar
  41. 41.
    Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575–583.CrossRefPubMedGoogle Scholar
  42. 42.
    Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006;13:225–234.CrossRefPubMedGoogle Scholar
  43. 43.
    Takehana Y, Kurokawa T, Kitamura T, et al. Suppression of laser-induced choroidal neovascularization by oral tranilast in the rat. Invest Ophthalmol Vis Sci 1999;40:459–466.PubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society (JOS) 2008

Authors and Affiliations

  • Junko Kami
    • 1
  • Kimimasa Muranaka
    • 1
  • Yasuo Yanagi
    • 1
  • Ryo Obata
    • 1
  • Yasuhiro Tamaki
    • 1
  • Masabumi Shibuya
    • 2
  1. 1.Department of Ophthalmology, Faculty of MedicineUniversity of TokyoTokyoJapan
  2. 2.Department of Genetics, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations