Japanese Journal of Ophthalmology

, Volume 51, Issue 6, pp 456–461 | Cite as

In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera

  • Yoshiyuki Kitaguchi
  • Kenichiro Bessho
  • Tatsuo Yamaguchi
  • Naoki Nakazawa
  • Toshifumi Mihashi
  • Takashi Fujikado
CLINICAL INVESTIGATION

Abstract

Purpose

To determine the cone spacing in normal and myopic eyes from the images obtained by an adaptive optics (AO) fundus camera.

Methods

Nineteen eyes of 19 healthy volunteers with a mean ± SD spherical equivalent refractive error of −3.7 ± 3.3 diopters (D) (range, −0.3 to −11.1 D) and a mean axial length of 25.4 ± 1.61 mm (range, 23.4–28.0 mm) were investigated in a prospective cross-sectional study. An AO fundus camera equipped with a liquid crystal phase modulator was used to obtain the images of the photoreceptor mosaic. The spacing between the cones was calculated manually at a retinal locus 2° temporal from the center of the fovea. The magnification of the image was calculated by the axial length measured with an IOL Master.

Results

The axial length was correlated with the refractive error (Pearson, r = −0.869; P < 0.001). The average cone spacing in the moderate- to high-myopia group (−6.5 ± 2.3 D, n = 9) was 4.71 ± 0.44 µm, which was significantly greater (P = 0.002) than the 3.90 ± 0.47 µm in the normal and low-myopia groups (−1.1 ± 0.9 D, n = 10). The cone spacing was significantly correlated with the axial length (r = 0.77, P < 0.001).

Conclusions

The AO fundus camera is capable of acquiring images of the photoreceptors in normal and myopic eyes. The greater spacing between cones in the myopia group is consistent with histological findings. These results suggest that retinal expansion should be considered in addition to Knapp's law when aniseikonia is evaluated in axial myopia. Jpn J Ophthalmol 2007;51:456–461 © Japanese Ophthalmological Society 2007

Key words

adaptive optics myopia photoreceptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liang, J, Williams, DR, Miller, DT 1997Supernormal vision and high-resolution retinal imaging through adaptive opticsJ Opt Soc Am A1428842892CrossRefGoogle Scholar
  2. 2.
    Roorda, A, Williams, DR 1999The arrangement of the three cone classes in the living human eyeNature397520522PubMedCrossRefGoogle Scholar
  3. 3.
    Pallikaris, A, Williams, DR, Hofer, H 2003The reflectance of single cones in the living human eyeInvest Ophthalmol Vis Sci4445804592PubMedCrossRefGoogle Scholar
  4. 4.
    Carroll, J, Neitz, M, Hofer, H,  et al. 2004Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindnessProc Natl Acad Sci U S A10184618466PubMedCrossRefGoogle Scholar
  5. 5.
    Hofer, H, Carroll, J, Neitz, J,  et al. 2005Organization of the human trichromatic cone mosaicJ Neurosci2596699679PubMedCrossRefGoogle Scholar
  6. 6.
    Wolfing, JI, Chung, M, Carroll, J,  et al. 2006High-resolution retinal imaging of cone-rod dystrophyOphthalmology11310141019CrossRefGoogle Scholar
  7. 7.
    Pircher, M, Baumann, B, Gotzinger, E,  et al. 2006Retinal cone mosaic imaged with transverse scanning optical coherence tomographyOpt Lett3118211823PubMedCrossRefGoogle Scholar
  8. 8.
    Rha, J, Jonnal, RS, Thorn, KE,  et al. 2006Adaptive optics flood-illumination camera for high speed retinal imagingOpt Express1445524569CrossRefPubMedGoogle Scholar
  9. 9.
    Martin, JA, Roorda, A 2005Direct and noninvasive assessment of parafoveal capillary leukocyte velocityOphthalmology11222192224PubMedCrossRefGoogle Scholar
  10. 10.
    Prieto, P, Fernandez, E, Manzanera, S,  et al. 2004Adaptive optics with a programmable phase modulator: applications in the human eyeOpt Express1240594071CrossRefPubMedGoogle Scholar
  11. 11.
    Grossniklaus, HE, Green, WR 1992Pathologic findings in pathologic myopiaRetina12127133PubMedCrossRefGoogle Scholar
  12. 12.
    Chui, TY, Yap, MK, Chan, HH,  et al. 2005Retinal stretching limits peripheral visual acuity in myopiaVision Res45593605PubMedCrossRefGoogle Scholar
  13. 13.
    Coletta, NJ, Watson, T 2006Effect of myopia on visual acuity measured with laser interference fringesVision Res46636651PubMedCrossRefGoogle Scholar
  14. 14.
    Bennett, AG, Rudnicka, AR, Edgar, DF 1994Improvements on Littmann's method of determining the size of retinal features by fundus photographyGraefes Arch Clin Exp Ophthalmol232361367PubMedCrossRefGoogle Scholar
  15. 15.
    Curcio, CA, Sloan, KR, Kalina, RE,  et al. 1990Human photoreceptor topographyJ Comp Neurol292497523PubMedCrossRefGoogle Scholar
  16. 16.
    Atchison, DA, Jones, CE, Schmid, KL,  et al. 2004Eye shape in emmetropia and myopiaInvest Ophthalmol Vis Sci4533803386PubMedCrossRefGoogle Scholar
  17. 17.
    Atchison, DA, Schmid, KL, Pritchard, N 2006Neural and optical limits to visual performance in myopiaVision Res4637073722PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2007

Authors and Affiliations

  • Yoshiyuki Kitaguchi
    • 1
  • Kenichiro Bessho
    • 2
  • Tatsuo Yamaguchi
    • 3
  • Naoki Nakazawa
    • 3
  • Toshifumi Mihashi
    • 3
  • Takashi Fujikado
    • 1
  1. 1.Department of Applied Visual ScienceOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Yodogawa Christian HospitalOsakaJapan
  3. 3.Topcon Research InstituteTokyoJapan

Personalised recommendations