Wiener Medizinische Wochenschrift

, Volume 169, Issue 1–2, pp 33–40 | Cite as

Neurological complications of systemic tumor therapy

  • Wolfgang GrisoldEmail author
  • Wolfgang Löscher
  • Anna Grisold
original article


The treatment of malignant tumors has considerably improved in recent years, and also the number of “long term cancer survivors” is increasing.

The spectrum of anti-tumoral agents is increasing at a fast pace and in addition to conventional therapies such as surgery, radiotherapy, and chemotherapy, new drugs with entirely new mechanisms are appearing. Side effects of old and new drugs can affect the central and peripheral nervous system, the neuromuscular junction, and muscle. These side effects often have to be distinguished from other causes and need neurological expertise. Although the majority of patients still receive conventional therapies, several new strategies such as immune therapies are being implemented. These drugs have also drug specific side effects, which do not always follow the classical principles of “toxicity.”

This review focuses on the well-known and described side effects of conventional cancer therapies and adds new observations on new drugs.


Oncology Radiation therapy Chemotherapy Immune therapy Central nervous system Peripheral nervous system Side effects New drugs 

Neurologische Komplikationen der systemischen Tumortherapie


Die Behandlung maligner Tumoren hat sich in den letzten Jahren beträchtlich verbessert. Auch die Zahl der Langzeitüberlebenden nach Tumorerkrankung steigt.

Das Spektrum der Wirkstoffe gegen Krebs nimmt rasant zu. Neben konventionellen Therapien, wie operativen Eingriffen, Radiotherapie und Chemotherapie, werden neue Substanzen mit vollkommen neuen Wirkmechanismen eingeführt. Nebenwirkungen alter und neuer Medikamente können das zentrale und periphere Nervensystem, die motorische Endplatte und den Muskel betreffen. Diese Nebenwirkungen müssen häufig von anderen Ursachen abgegrenzt werden und erfordern neurologisches Fachwissen. Auch wenn die Mehrzahl der Patienten immer noch konventionelle Therapien erhält, werden aktuell verschiedene neue Strategien wie Immuntherapien etabliert. Entsprechende Medikamente haben auch spezifische Nebenwirkungen, die nicht immer den klassischen Grundsätzen der „Toxizität“ folgen.

Der Fokus der vorliegenden Übersicht liegt auf bekannten und gut charakterisierten Nebenwirkungen konventioneller Tumortherapien. Darüber hinaus werden Beobachtungen zu neuen Medikamenten beschrieben.


Onkologie Strahlentherapie Chemotherapie Immuntherapie Zentrales Nervensystem Peripheres Nervensystem Nebenwirkungen Neue Substanzen 


Conflict of interest

W. Grisold, W. Löscher, and A. Grisold declare that they have no competing interests.


  1. 1.
    Zukas AM, Schiff D. Neurological complications of new chemotherapy agents. Neuro-oncology. 2018;20(1):24–36.PubMedGoogle Scholar
  2. 2.
    Greene-Schloesser D, et al. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sharma S, et al. Effect of prophylactic cranial irradiation on overall survival in metastatic small-cell lung cancer: a propensity score-matched analysis. Clin Lung Cancer. 2017; Scholar
  4. 4.
    Radcliffe J, et al. Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: age-dependent effects of whole brain radiation. Int J Dev Neurosci. 1994;12(4):327–34.PubMedGoogle Scholar
  5. 5.
    Zhao R, et al. Hippocampal-sparing whole-brain radiotherapy for lung cancer. Clin Lung Cancer. 2017;18(2):127–31.PubMedGoogle Scholar
  6. 6.
    Mehanna R, Jimenez-Shahed J, Itin I. Three cases of Levodopa-resistant Parkinsonism after radiation therapy. Am J Case Rep. 2016;17:916–20.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Pompe RS, von Bueren SO, Mynarek M, von Hoff K, Friedrich C, Kwiecien R, Treulieb W, Lindow C, Deinlein F, Fleischhack G, Kuehl J, Rutkowski S. Intraventricular methotrexate as part of primary therapy for children with infant and/or metastatic medulloblastoma: feasibility, acute toxicity and evidence for efficacy. Eur J Cancer. 2015;51(17):2634–42. .2015.08.009.PubMedGoogle Scholar
  8. 8.
    Song YP, Colaco RJ. Radiation necrosis—a growing problem in a case of brain metastases following whole brain radiotherapy and stereotactic radiosurgery. Cureus. 2018;10(1):e2037.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Shah AH, et al. Discriminating radiation necrosis from tumor progression in gliomas: a systematic review what is the best imaging modality? J Neurooncol. 2013;112(2):141–52.PubMedGoogle Scholar
  10. 10.
    Gujral DM, et al. Radiation-induced carotid artery atherosclerosis. Radiother Oncol. 2014;110(1):31–8.PubMedGoogle Scholar
  11. 11.
    Bond KM, et al. Endovascular treatment of carotid blowout syndrome. J Vasc Surg. 2017;65(3):883–8.PubMedGoogle Scholar
  12. 12.
    Tully CM, et al. The high incidence of vascular thromboembolic events in patients with metastatic or unresectable urothelial cancer treated with platinum chemotherapy agents. Cancer. 2016;122(5):712–21.PubMedGoogle Scholar
  13. 13.
    Grisold W, Oberndorfer S, Struhal W. Stroke and cancer: a review. Acta Neurol Scand. 2009;119(1):1–16.PubMedGoogle Scholar
  14. 14.
    Sweiss KI, Beri R, Shord SS. Encephalopathy after high-dose Ifosfamide: a retrospective cohort study and review of the literature. Drug Saf. 2008;31(11):989–96.PubMedGoogle Scholar
  15. 15.
    Valentine AD, et al. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol. 1998;25(1 Suppl 1):39–47.PubMedGoogle Scholar
  16. 16.
    Newton HB. Neurological complications of chemotherapy to the central nervous system. In: Grisold W, Soffietti R, editors. Handbook of clinical neurology 3rd series. Vol. 105. 2012. pp. 903–16.Google Scholar
  17. 17.
    Simóa M, Rifà-Rosa X, Rodriguez-Fornellsa A, Brunab J, More S. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37(8):1311–21.Google Scholar
  18. 18.
    Gaman AM, et al. The role of oxidative stress in etiopathogenesis of chemotherapy induced cognitive impairment (CICI)-“Chemobrain”. Aging Dis. 2016;7(3):307–17.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Simo M, et al. Performance monitoring in lung cancer patients pre- and post-chemotherapy using fine-grained electrophysiological measures. Neuroimage Clin. 2018;18:86–96.PubMedGoogle Scholar
  20. 20.
    Ren X, St. Clair DK, Butterfield DA. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol Res. 2017;117:267–73.PubMedGoogle Scholar
  21. 21.
    Kamiya-Matsuoka C, et al. Primary brain tumors and posterior reversible encephalopathy syndrome. Neurooncol Pract. 2014;1(4):184–90.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mescher C, Slungaard A. Posterior reversible encephalopathy syndrome in a postpartum woman with acute lymphoblastic leukaemia after intrathecal methotrexate. BMJ Case Rep. 2017; Scholar
  23. 23.
    Deguchi S, et al. Posterior reversible encephalopathy syndrome (PRES) induced by pazopanib, a multi-targeting tyrosine kinase inhibitor, in a patient with soft-tissue sarcoma: case report and review of the literature. Invest New Drugs. 2018;36(2):346–9.PubMedGoogle Scholar
  24. 24.
    Gheith O, et al. Sirolimus-induced combined posterior reversible encephalopathy syndrome and lymphocytic pneumonitis in a renal transplant recipient: case report and review of the literature. Exp Clin Transplant. 2017;15(Suppl 1):170–4.PubMedGoogle Scholar
  25. 25.
    Bohra C, Sokol L, Dalia S. Progressive multifocal leukoencephalopathy and monoclonal antibodies: a review. Cancer Control. 2017;24(4):1073274817729901.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60.PubMedGoogle Scholar
  27. 27.
    Kuru S, Khan N, Shaaban H. Acute hypophysitis secondary to nivolumab immunotherapy in a patient with metastatic melanoma. Int J Crit Illn Inj Sci. 2017;7(3):177–80.PubMedPubMedCentralGoogle Scholar
  28. 28.
    McGinnis GJ, Raber J. CNS side effects of immune checkpoint inhibitors: preclinical models, genetics and multimodality therapy. Immunotherapy. 2017;9(11):929–41.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pak D, et al. Lhermitte sign after chemo-IMRT of head-and-neck cancer: incidence, doses, and potential mechanisms. Int J Radiat Oncol Biol Phys. 2012;83(5):1528–33.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Leung WM, Tsang N‑M, Chang FT, et al. Lhermitte’s sign among nasopharyngeal cancer patients after radiotherapy. Head Neck. 2005;27:187–94.PubMedGoogle Scholar
  31. 31.
    O’Reilly A, et al. Lhermitte’s phenomenon and platinum, beware of latency. Oncol Res Treat. 2014;37(10):591–4.PubMedGoogle Scholar
  32. 32.
    Pompili A, et al. Symptomatic spinal cord necrosis after irradiation for vertebral metastatic breast cancer. J Clin Oncol. 2011;29(3):e53–e6.PubMedGoogle Scholar
  33. 33.
    Bowen J, et al. The post-irradiation lower motor neuron syndrome neuronopathy or radiculopathy? Brain. 1996;119(5):1429–39.PubMedGoogle Scholar
  34. 34.
    Cachia D, et al. Myelopathy following intrathecal chemotherapy in adults: a single institution experience. J Neurooncol. 2015;122(2):391–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Resnick IB, et al. Spinal epidural lipomatosis following haploidentical allogeneic bone marrow transplantation for non-Hodgkin lymphoma. Clin Transplant. 2004;18(6):762–5.PubMedGoogle Scholar
  36. 36.
    Grisold W, Grisold A, Löscher WN. Neuromuscular complications in cancer. J Neurol Sci. 2016;367:184–202.PubMedGoogle Scholar
  37. 37.
    Grisold W, Grisold A, Löscher W. Cancer therapy and neuromuscular complications: a mini review. Neurology (ECronicon). 2017;9(1):20–6.Google Scholar
  38. 38.
    Vecht CJ. Arm pain in the patient with breast cancer. J Pain Symptom Manage. 1990;5(2):109–17.PubMedGoogle Scholar
  39. 39.
    Orsolya H‑B, Coros MF, Stolnicu S, Naznean A, Georgescu R. Does the surgical management of the intercostobrachial nerve influence the postoperatory paresthesia of the upper limb and life quality in breast cancer patients? Chirurgia (Bucur). 2017;112(4):436–42.Google Scholar
  40. 40.
    Kääriäinen M, Giordano S, Kauhanen S, Helminen M, Kuokkanen H. No need to cut the nerve in LD reconstruction to avoid jumping of the breast: a prospective randomized study. J Plast Reconstr Aesthet Surg. 2014;67(8):1106–10.PubMedGoogle Scholar
  41. 41.
    Gunterberg B, et al. Anorectal function after major resections of the sacrum with bilateral or unilateral sacrifice of sacral nerves. Br J Surg. 1976;63(7):546–54.PubMedGoogle Scholar
  42. 42.
    Brooks AD, et al. Resection of the sciatic, peroneal, or tibial nerves: assessment of functional status. Ann Surg Oncol. 2002;9(1):41–7.PubMedGoogle Scholar
  43. 43.
    Stubblefield MD. Clinical evaluation and management of radiation fibrosis syndrome. Phys Med Rehabil Clin N Am. 2017;28(1):89–100.PubMedGoogle Scholar
  44. 44.
    Sood SS, et al. Brachial plexopathy after stereotactic body radiation therapy for apical lung cancer: dosimetric analysis and preliminary clinical outcomes. Adv Radiat Oncol. 2018;3(1):81–6.PubMedGoogle Scholar
  45. 45.
    Kounis NG, Macauley MB, Ghorbal MS. Iliacus hematoma syndrome. Can Med Assoc J. 1975;112(7):872–3.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Brejt N, et al. Pelvic radiculopathies, lumbosacral plexopathies, and neuropathies in oncologic disease: a multidisciplinary approach to a diagnostic challenge. Cancer Imaging. 2013;13(4):591–601.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Capek S, et al. Perineural spread of pelvic malignancies to the lumbosacral plexus and beyond: clinical and imaging patterns. Neurosurg Focus. 2015;39(3):E14.PubMedGoogle Scholar
  48. 48.
    Dalmau J, Graus F, Marco M. ‘Hot and dry foot’ as initial manifestation of neoplastic lumbosacral plexopathy. Neurology. 1989;39(6):871–2.PubMedGoogle Scholar
  49. 49.
    Evans RJ, Watson CP. The hot foot syndrome: evans’ sign and the old way. Pain Res Manag. 2012;17(1):31–4.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gikas PD, et al. Post-radiation sciatic neuropathy: a case report and review of the literature. World J Surg Oncol. 2008;6:130.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jones L, Bradley L. Late and multifocal presentations of malignant peripheral nerve sheath tumours following radiotherapy. BMJ Case Rep. 2015; Scholar
  52. 52.
    Staff NP, et al. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ibanez-Julia MJ, et al. Antineoplastic agents exacerbating Charcot Marie Tooth disease: red flags to avoid permanent disability. Acta Oncol. 2018;57(3):403–11.PubMedGoogle Scholar
  54. 54.
    Kerckhove N, et al. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol. 2017;8:86.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gu Y, et al. Immune mediated neuropathy following checkpoint immunotherapy. J Clin Neurosci. 2017;45:14–7.PubMedGoogle Scholar
  56. 56.
    Kolb NA, et al. The neuromuscular complications of immune checkpoint inhibitor therapy. Muscle Nerve. 2018; Scholar
  57. 57.
    Tanaka R, Maruyama H, Tomidokoro Y, Yanagiha K, Hirabayashi T, Ishii A, Okune M, Inoue S, Sekine I, Tamaoka A, Fujimoto M. Nivolumab-induced chronic inflammatory demyelinating polyradiculoneuropathy mimicking rapid-onset Guillain-Barré syndrome: a case report. Jpn J Clin Oncol. 2016;46(9):875–8. Scholar
  58. 58.
    Kao JC, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74(10):1216–22.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Binda D, et al. Rasch-built Overall Disability Scale for patients with chemotherapy-induced peripheral neuropathy (CIPN-R-ODS). Eur J Cancer. 2013;49(13):2910–8.PubMedGoogle Scholar
  60. 60.
    Cornblath DR, et al. Total neuropathy score: validation and reliability study. Neurology. 1999;53(8):1660–4.PubMedGoogle Scholar
  61. 61.
    Shah A, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatr. 2018; Scholar
  62. 62.
    Nayar G, et al. Leptomeningeal disease: current diagnostic and therapeutic strategies. Oncotarget. 2017;8(42):73312–28.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sun V, et al. Toxicities, complications, and clinical encounters during intraperitoneal chemotherapy in 17 women with ovarian cancer. Eur J Oncol Nurs. 2013;17(3):375–80.PubMedGoogle Scholar
  64. 64.
    Busse O, Aigner K, Wilimzig H. Peripheral nerve damage following isolated extremity perfusion with cis-platinum. Recent Results Cancer Res. 1983;86:264–7.PubMedGoogle Scholar
  65. 65.
    Ari P, et al. Treatment of transient peripheral neuropathy during chimeric 14.18 antibody therapy in children with neuroblastoma: a case series. J Pediatr Hematol Oncol. 2018;40(2):e113–e6.PubMedGoogle Scholar
  66. 66.
    Shaw AT, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590–9.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kanaan Z, et al. Guillain-Barre syndrome following treatment with Sunitinib Malate. Case Rep Oncol Med. 2014;2014:712040.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Krop I, Winer EP. Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer. Clin Cancer Res. 2014;20(1):15–20.PubMedGoogle Scholar
  69. 69.
    Mariotto S, Ferrari S, Monaco S. Brentuximab vedotin-induced peripheral neuropathy: looking at microtubules. J Neurooncol. 2018; Scholar
  70. 70.
    Yamanouchi K, et al. The relationship between peripheral neuropathy induced by Docetaxel and systemic inflammation-based parameters in patients with breast cancer. Anticancer Res. 2017;37(12):6947–51.PubMedGoogle Scholar
  71. 71.
    Lees JG, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. 2017;73:22–9.PubMedGoogle Scholar
  72. 72.
    Batchelor TT, et al. Steroid myopathy in cancer patients. Neurology. 1997;48(5):1234–8.PubMedGoogle Scholar
  73. 73.
    Basualto-Alarcon C, et al. Sarcopenia and androgens: a link between pathology and treatment. Front Endocrinol (Lausanne). 2014;5:217.Google Scholar
  74. 74.
    Mieog JS, et al. Carpal tunnel syndrome and musculoskeletal symptoms in postmenopausal women with early breast cancer treated with exemestane or tamoxifen after 2–3 years of tamoxifen: a retrospective analysis of the Intergroup Exemestane Study. Lancet Oncol. 2012;13(4):420–32.PubMedGoogle Scholar
  75. 75.
    Hoffmann S, et al. Glucocorticoids in myasthenia gravis—if, when, how, and how much? Acta Neurol Scand. 2014;130(4):211–21.PubMedGoogle Scholar
  76. 76.
    Bhattacharyya S, Darby R, Berkowitz AL. Antibiotic-induced neurotoxicity. Curr Infect Dis Rep. 2014;16(12):448.PubMedGoogle Scholar
  77. 77.
    Loochtan AI, Nickolich MS, Hobson-Webb LD. Myasthenia gravis associated with ipilimumab and nivolumab in the treatment of small cell lung cancer. Muscle Nerve. 2015; Scholar
  78. 78.
    Suzuki S. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology. 2017;89:1127–34.PubMedGoogle Scholar
  79. 79.
    Chen JH, et al. Coexisting myasthenia gravis, myositis, and polyneuropathy induced by ipilimumab and nivolumab in a patient with non-small-cell lung cancer: a case report and literature review. Medicine (Baltimore). 2017;96(50):e9262.Google Scholar
  80. 80.
    Fearon K, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.PubMedGoogle Scholar
  81. 81.
    Baracos VE, et al. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105.PubMedGoogle Scholar
  82. 82.
    Aussy A, Boyer O, Cordel N. Dermatomyositis and immune-mediated necrotizing myopathies: a window on autoimmunity and cancer. Front Immunol. 2017;8:992.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Argiles JM, et al. Novel targeted therapies for cancer cachexia. Biochem J. 2017;474(16):2663–78.PubMedGoogle Scholar
  84. 84.
    Perel-Winkler A, et al. A case of Docetaxel induced myositis and review of the literature. Case Rep Rheumatol. 2015;2015:795242.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Spielmann L, et al. Gemcitabine-induced myopathy. Semin Arthritis Rheum. 2014;43(6):784–91.PubMedGoogle Scholar
  86. 86.
    Minami H, et al. Phase I, multicenter, open-label, dose-escalation study of sonidegib in Asian patients with advanced solid tumors. Cancer Sci. 2016;107(10):1477–83.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yoshidome Y, et al. A case of polymyositis complicated with myasthenic crisis. Clin Rheumatol. 2007;26(9):1569–70.PubMedGoogle Scholar
  88. 88.
    Muto Y, et al. Success of rechallenging dabrafenib and trametinib combination therapy after trametinib-induced rhabdomyolysis: a case report. Melanoma Res. 2018;28(2):151–4.PubMedGoogle Scholar
  89. 89.
    Burris HA 3rd, Hurtig J. Radiation recall with anticancer agents. Oncologist. 2010;15(11):1227–37.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Stephenson AL, Mackenzie IRA, Levy RD, Road J. Myositis associated graft-versus-host-disease presenting as respiratory muscle weakness. Thorax. 2001;56:82–4.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Smith CI, et al. Myasthenia gravis after bone-marrow transplantation. Evidence for a donor origin. N Engl J Med. 1983;309(25):1565–8.PubMedGoogle Scholar
  92. 92.
    Leeper HE, Acquaye AA, Bell S, Clarke JL, Forst D, Laack NN, Link MJ, Taylor JW, Armstrong TS. Survivorship care planning in neuro-oncology. Neurooncol Pract. 2017; Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Wolfgang Grisold
    • 1
    Email author
  • Wolfgang Löscher
    • 2
  • Anna Grisold
    • 3
  1. 1.Ludwig Boltzmann Institute for Experimental und Clinical TraumatologyViennaAustria
  2. 2.Univ. Klinik für Neurologie InnsbruckMedizinische Universität InnsbruckInnsbruckAustria
  3. 3.Neurologische AbteilungMedizinische Universität WienViennaAustria

Personalised recommendations