• Karsten KellerEmail author


Sarcopenia is a very common, but frequently overlooked and undertreated geriatric syndrome comprising pronounced muscle mass and strength/performance loss. Estimated prevalence is between 5 and 40% in the general population, accompanied by an exponential incline with increasing age. Sarcopenia is connected to atrophy and loss of muscle fibers and motor units, affecting primarily the fast-twitch muscle fibers und their motor units. Fast-twitch muscle fibers seem to be more prone to failure of function and loss over time. Main causes for the development of sarcopenia are hormonal changes (reduced release of testosterone, estrogen, and growth hormone), nutritional deficiencies, chronic inflammation, and particularly a decrease in physical activity due to sedentary lifestyle with advancing age. Treatment options for sarcopenia comprise an active lifestyle with physical activity and exercise training, modifications of nutritional intake, and pharmacological therapies. Strength training and an adequate nutritional intake form the basis of successful sarcopenia treatment.


Sarcopenia Muscle Strength Performance Age 



Die Sarkopenie ist ein häufiges und oft übersehenes geriatrisches Syndrom mit einem verstärkten Verlust von Muskelmasse und Muskelkraft/Leistung. Die geschätzte Prävalenz liegt bei 5–40 % in der Bevölkerung – mit einem altersbezogenen exponentiellen Anstieg. Einer Sarkopenie liegen eine Atrophie und ein Verlust von Muskelfasern bzw. der motorischen Einheiten zugrunde. Sie betrifft vorrangig die schnellen Typ-II-Muskelfasern und deren motorische Einheiten. Schnelle Typ-II-Muskelfasern scheinen anfälliger für einen Funktionsverlust und einen Untergang der Muskelfasern zu sein. Wichtige Ursachen einer Sarkopenie sind hormonelle Veränderungen (abfallende Testosteron‑, Östrogen- und Wachstumshormonspiegel), Mangelernährung, chronische Entzündungsprozesse und insbesondere eine reduzierte körperliche Aktivität aufgrund eines vorwiegend bewegungsarmen Lebensstils. Behandlungsoptionen umfassen einen aktiven Lebensstil mit viel körperlicher Bewegung und sportlicher Aktivität, Anpassung der Ernährung und ggf. auch eine pharmakologische Therapie. Krafttraining und eine adäquate Ernährung stellen die Grundlage eines erfolgreichen Behandlungskonzepts einer Sarkopenie dar.


Sarkopenie Muskel Kraft Leistungsfähigkeit Alter 



This study was supported by the German Federal Ministry of Education and Research (BMBF 01EO1003 and BMBF 01EO1503). The author is responsible for the contents of this publication.

Conflict of interest

K. Keller declares that he has no competing interests.


  1. 1.
    von Haehling S, Morley JE, Anker SD. From muscle wasting to sarcopenia and myopenia: update 2012. J Cachexia Sarcopenia Muscle. 2012;3(4):213–7.CrossRefGoogle Scholar
  2. 2.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferris LT, Williams JS, Shen C‑L, O’Keefe KA, Hale KB. Resistance training improves sleep quality in older adults—a pilot study. J Sports Sci Med. 2005;4:354–60.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Surakka J. Power-type strength training in middle-aged men and women. J Sports Sci Med. 2005;4:1–35.Google Scholar
  5. 5.
    Palmer IJ, Runnels ED, Bemben MG, Bemben DA. Muscle-bone interactions across age in men. J Sports Sci Med. 2006;5:43–51.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Deschenes MR. Effects of aging on muscle fibre type and size. Sports Med. 2004;34(12):809–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50:5–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993;123(Suppl 2):465–8.PubMedGoogle Scholar
  9. 9.
    Gallagher D, Ruts E, Visser M, Heshka S, Baumgartner RN, Wang J, et al. Weight stability masks sarcopenia in elderly men and women. Am J Physiol Endocrinol Metab. 2000;279(2):E366–E75.PubMedCrossRefGoogle Scholar
  10. 10.
    Morrison S, Newell KM. Aging, neuromuscular decline, and the change in physiological and behavioral complexity of upper-limb movement dynamics. J Aging Res. 2012; Scholar
  11. 11.
    Keller K, Coldewey M, Engelhardt M. Muscle mass and strength loss with aging. Gazz Med Ital Arch Sci Med. 2014;173(9):477–83.Google Scholar
  12. 12.
    Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013;3(4):346–50.PubMedGoogle Scholar
  13. 13.
    McCurdy K, Langford G. The relationship between maximum unilateral squat strength and balance in young adult men and women. J Sports Sci Med. 2006;5:282–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zatsiorsky VM, Kreamer WJ. Krafttraining in Praxis und Wissenschaft. Aachen: Meyer & Meyer; 2008.Google Scholar
  15. 15.
    Vaillancourt DE, Newell KM. Aging and the time and frequency structure of force output variability. J Appl Physiol. 2003;94(3):903–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Proctor DN, Balagopal P, Nair KS. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr. 1998;128(2 Suppl):351S–5S.PubMedGoogle Scholar
  17. 17.
    Jones TE, Stephenson KW, King JG, Knight KR, Marshall TL, Scott WB. Sarcopenia—mechanisms and treatments. J Geriatr Phys Ther. 2009;32(2):83–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Doherty TJ. The influence of aging and sex on skeletal muscle mass and strength. Curr Opin Clin Nutr Metab Care. 2001;4(6):503–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Prochniewicz E, Thompson LV, Thomas DD. Age-related decline in actomyosin structure and function. Exp Gerontol. 2007;42(10):931–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107(2):123–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, et al. Age-related cardiac muscle sarcopenia: combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol. 2008;43(4):296–306.PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson LV. Age-related muscle dysfunction. Exp Gerontol. 2009;44(1–2):106–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bauer JM, Kaiser MJ, Sieber CC. Sarcopenia in nursing home residents. J Am Med Dir Assoc. 2008;9(8):545–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Siegrist M, Freiberger E, Geilhof B, Salb J, Hentschke C, Landendoerfer P, et al. Fall prevention in a primary care setting—the effects of a target complex exercise intervention in a cluster randomized trial. Dtsch Arztebl Int. 2016;113:365–72.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Cho SI, An DH. Effects of a fall prevention exercise program on muscle strength and balance of the old-old elderly. J Phys Ther Sci. 2014;26(11):1771–4.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Becker C, Kron M, Lindemann U, Sturm E, Eichner B, Walter-Jung B, et al. Effectiveness of a multifaceted intervention on falls in nursing home residents. J Am Geriatr Soc. 2003;51(3):306–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Jensen J, Lundin-Olsson L, Nyberg L, Gustafson Y. Fall and injury prevention in older people living in residential care facilities. A cluster randomized trial. Ann Intern Med. 2002;136(10):733–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Karamanidis K, Arampatzis A, Mademli L. Age-related deficit in dynamic stability control after forward falls is affected by muscle strength and tendon stiffness. J Electromyogr Kinesiol. 2008;18(6):980–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Keller K, Engelhardt M. AMI – Konsequenzen für die Rehabilitation. Man Ther. 2017;21(2):62–5.Google Scholar
  33. 33.
    Wall BT, Dirks ML, van Loon LJ. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev. 2013;12(4):898–906.PubMedCrossRefGoogle Scholar
  34. 34.
    Lau EM, Lynn HS, Woo JW, Kwok TC, Melton LJ 3rd. Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci. 2005;60(2):213–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Invest. 1999;22(5 Suppl):110–6.PubMedGoogle Scholar
  38. 38.
    Berger MJ, Doherty TJ. Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip Top Gerontol. 2010;37:94–114.PubMedCrossRefGoogle Scholar
  39. 39.
    Bauer JM, Sieber CC. Sarcopenia and frailty: a clinician’s controversial point of view. Exp Gerontol. 2008;43(7):674–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Vermeulen A. Ageing, hormones, body composition, metabolic effects. World J Urol. 2002;20(1):23–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Klein CS, Rice CL, Marsh GD. Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol. 2001;91(3):1341–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Tseng LA, Delmonico MJ, Visser M, Boudreau RM, Goodpaster BH, Schwartz AV, et al. Body composition explains sex differential in physical performance among older adults. J Gerontol A Biol Sci Med Sci. 2014;69(1):93–100.PubMedCrossRefGoogle Scholar
  45. 45.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenberg I. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231–3.CrossRefGoogle Scholar
  47. 47.
    Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc. 2002;50(5):897–904.PubMedCrossRefGoogle Scholar
  48. 48.
    Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the international working group on sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3(3):181–90.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Takamatsu Y, Koike W, Takenouchi T, Sugama S, Wei J, Waragai M, et al. Protection against neurodegenerative disease on Earth and in space. Npj Microgravity. 2016;2:16013.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci. 2002;57(12):M772–M7.PubMedCrossRefGoogle Scholar
  53. 53.
    Kenny AM, Dawson L, Kleppinger A, Iannuzzi-Sucich M, Judge JO. Prevalence of sarcopenia and predictors of skeletal muscle mass in nonobese women who are long-term users of estrogen-replacement therapy. J Gerontol A Biol Sci Med Sci. 2003;58(5):M436–M40.PubMedCrossRefGoogle Scholar
  54. 54.
    Rolland Y, Abellan van Kan G, Gillette-Guyonnet S, Vellas B. Cachexia versus sarcopenia. Curr Opin Clin Nutr Metab Care. 2011;14(1):15–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Collins J, Noble S, Chester J, Coles B, Byrne A. The assessment and impact of sarcopenia in lung cancer: a systematic literature review. BMJ Open. 2014;4(1):e3697.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27(1):1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62(2):253–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5 Suppl):990S–1S.PubMedGoogle Scholar
  60. 60.
    Özkaya GY, Aydin H, Toraman FN, Kizilay F, Özdemir Ö, Cetinkaya V. Effect of strength and endurance training on cognition in older people. J Sports Sci Med. 2005;4:300–13.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Erim Z, Beg MF, Burke DT, de Luca CJ. Effects of aging on motor-unit control properties. J Neurophysiol. 1999;82(5):2081–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;5:217–28.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Saini A, Faulkner S, Al-Shanti N, Stewart C. Powerful signals for weak muscles. Ageing Res Rev. 2009;8(4):251–67.PubMedCrossRefGoogle Scholar
  64. 64.
    Kamen G, Roy A. Motor unit synchronization in young and elderly adults. Eur J Appl Physiol. 2000;81(5):403–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Schwarz ER, Phan A, Willix RD Jr.. Andropause and the development of cardiovascular disease presentation-more than an epi-phenomenon. J Geriatr Cardiol. 2011;8(1):35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Palacios S, Henderson VW, Siseles N, Tan D, Villaseca P. Age of menopause and impact of climacteric symptoms by geographical region. Climacteric. 2010;13(5):419–28.PubMedCrossRefGoogle Scholar
  67. 67.
    Kicman AT. Pharmacology of anabolic steroids. Br J Pharmacol. 2008;154(3):502–21.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hohmann E, Tetsworth K, Hohmann S, Bryant AL. Anabolic steroids after total knee arthroplasty. A double blinded prospective pilot study. J Orthop Surg Res. 2010;5:93.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Morley PM, Stauber PM, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metab Clin Exp. 1997;46(4):410–3.PubMedCrossRefGoogle Scholar
  70. 70.
    Basualto-Alarcon C, Varela D, Duran J, Maass R, Estrada M. Sarcopenia and androgens: a link between pathology and treatment. Front Endocrinol (Lausanne). 2014;5:217.Google Scholar
  71. 71.
    Sorensen MB, Rosenfalck AM, Hojgaard L, Ottesen B. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes Res. 2001;9(10):622–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact. 2009;9(4):186–97.PubMedGoogle Scholar
  73. 73.
    Sakuma K, Yamaguchi A. Sarcopenia and age-related endocrine function. Int J Endocrinol. 2012; Scholar
  74. 74.
    Kenny AM, Kleppinger A, Wang Y, Prestwood KM. Effects of ultra-low-dose estrogen therapy on muscle and physical function in older women. J Am Geriatr Soc. 2005;53(11):1973–7.PubMedCrossRefGoogle Scholar
  75. 75.
    La Colla A, Pronsato L, Milanesi L, Vasconsuelo A. 17beta-estradiol and testosterone in sarcopenia: role of satellite cells. Ageing Res Rev. 2015;24(Pt B):166–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Urban RJ, Dillon EL, Choudhary S, Zhao Y, Horstman AM, Tilton RG, et al. Translational studies in older men using testosterone to treat sarcopenia. Trans Am Clin Climatol Assoc. 2014;125:27–42. discussion 4.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Wahlin-Larsson B, Carnac G, Kadi F. The influence of systemic inflammation on skeletal muscle in physically active elderly women. Age (dordr). 2014;36(5):9718.CrossRefGoogle Scholar
  78. 78.
    Rocha R, Santana GO, Almeida N, Lyra AC. Analysis of fat and muscle mass in patients with inflammatory bowel disease during remission and active phase. Br J Nutr. 2009;101(5):676–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Krüger K. The increasing importance of immune regulatory effects by physical activity. Dtsch Z Sportmed. 2017;68(12):277–9.CrossRefGoogle Scholar
  80. 80.
    Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS ONE. 2010;5(5):e10805.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Keller K, Engelhardt M. Muscle atrophy caused by limited mobilisation. Sportverletz Sportschaden. 2013;27(2):91–5. Muskelatrophie durch Mobilisationseinschränkung.PubMedCrossRefGoogle Scholar
  82. 82.
    Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63(10):1076–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007;297(16):1772–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Alley DE, Koster A, Mackey D, Cawthon P, Ferrucci L, Simonsick EM, et al. Hospitalization and change in body composition and strength in a population-based cohort of older persons. J Am Geriatr Soc. 2010;58(11):2085–91.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wackerhage H. Sarcopenia: causes and treatments. Dtsch Z Sportmed. 2017;68(7–8):178–83.CrossRefGoogle Scholar
  86. 86.
    Chin SO, Rhee SY, Chon S, Hwang YC, Jeong IK, Oh S, et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: the Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE. 2013;8(3):e60119.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci. 2012;67(1):48–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Tudorache V, Oancea C, Avram C, Fira-Mladinescu O. Changes in physical activity in healthy people and COPD patients. Wien Klin Wochenschr. 2014;126(1–2):30–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3(3):157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E. Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med. 2003;25(3):226–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Plurphanswat N, Rodu B. The association of smoking and demographic characteristics on body mass index and obesity among adults in the U.S., 1999–2012. BMC Obes. 2014;1:18.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sneve M, Jorde R. Cross-sectional study on the relationship between body mass index and smoking, and longitudinal changes in body mass index in relation to change in smoking status: the Tromso Study. Scand J Public Health. 2008;36(4):397–407.PubMedCrossRefGoogle Scholar
  94. 94.
    Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):1856–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cooper C, Fielding R, Visser M, van Loon LJ, Rolland Y, Orwoll E, et al. Tools in the assessment of sarcopenia. Calcif Tissue Int. 2013;93(3):201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lee DC, Shook RP, Drenowatz C, Blair SN. Physical activity and sarcopenic obesity: definition, assessment, prevalence and mechanism. Future Sci OA. 2016;2(3):FSO127.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kawakami R, Murakami H, Sanada K, Tanaka N, Sawada SS, Tabata I, et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015;15(8):969–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Keller K, Mortier J, Freiwald J, Engelhardt M. The effect of intraarticular medications on the early rehabilitation of knee patients. Dtsch Z Sportmed. 2010;61(7–8):163–70.Google Scholar
  100. 100.
    Nishimura Y, Tsutsumi M, Nakata H, Tsunenari T, Maeda H, Yokoyama M. Relationship between respiratory muscle strength and lean body mass in men with COPD. Chest. 1995;107(5):1232–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Zarzeczny R, Nawrat-Szoltysik A, Polak A, Maliszewski J, Kieltyka A, Matyja B, et al. Aging effect on the instrumented timed-up-and-go test variables in nursing home women aged 80–93 years. Biogerontology. 2017;18(4):651–63.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sartorio A, Lafortuna CL, Agosti F, Proietti M, Maffiuletti NA. Elderly obese women display the greatest improvement in stair climbing performance after a 3-week body mass reduction program. Int J Obes Relat Metab Disord. 2004;28(9):1097–104.PubMedCrossRefGoogle Scholar
  103. 103.
    Musselman K, Brouwer B. Gender-related differences in physical performance among seniors. J Aging Phys Act. 2005;13(3):239–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Leyk D. The preventive and therapeutic roles of regular physical activity. Dtsch Arztebl Int. 2009;106(44):713–4.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Halle M, Schoenberg MH. Physical activity in the prevention and treatment of colorectal carcinoma. Dtsch Arztebl Int. 2009;106(44):722–7.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Reimers CD, Knapp G, Reimers AK. Exercise as stroke prophylaxis. Dtsch Arztebl Int. 2009;106(44):715–21.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Wilms B, Schmid SM, Luley K, Wiskemann J, Lehnert H. Prevention and treatment of cachexia : exercise and nutritional therapy. Internist (Berl). 2016;57(10):971–7. Pravention und Behandlung der Kachexie : Bewegungs- und Ernahrungstherapie.CrossRefGoogle Scholar
  108. 108.
    Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91(4):1123S–7S.PubMedCrossRefGoogle Scholar
  109. 109.
    Roubenoff R. Sarcopenia: a major modifiable cause of frailty in the elderly. J Nutr Health Aging. 2000;4(3):140–2.PubMedGoogle Scholar
  110. 110.
    Roth SM, Ferrell RF, Hurley BF. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging. 2000;4(3):143–55.PubMedGoogle Scholar
  111. 111.
    Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Muller S, Scharhag J. The intensity and effects of strength training in the elderly. Dtsch Arztebl Int. 2011;108(21):359–64.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Leyk D, Ruther T, Wunderlich M, Sievert A, Essfeld D, Witzki A, et al. Physical performance in middle age and old age: good news for our sedentary and aging society. Dtsch Arztebl Int. 2010;107(46):809–16.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol. 2009;107(4):1172–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Becker C, Rapp K. Falling in geriatrics. Diagnosis and treatment. Internist (Berl). 2011;52(8):939–45. Stürze in der Geriatrie. Diagnostik und Therapie.CrossRefGoogle Scholar
  115. 115.
    Albert US, Kreienberg R, Schulz KD. Prävention und Brustkrebsfrüherkennung. Onkologe. 2002;8:797–807.CrossRefGoogle Scholar
  116. 116.
    Guadalupe-Grau A, Perez-Gomez J, Olmedillas H, Chavarren J, Dorado C, Santana A, et al. Strength training combined with plyometric jumps in adults: sex differences in fat-bone axis adaptations. J Appl Physiol. 2009;106(4):1100–11.PubMedCrossRefGoogle Scholar
  117. 117.
    Kelley G. Dynamic resistance exercise and resting blood pressure in adults: a meta-analysis. J Appl Physiol. 1997;82(5):1559–65.PubMedCrossRefGoogle Scholar
  118. 118.
    Etgen T, Sander D, Bickel H, Forstl H. Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int. 2011;108(44):743–50.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Bauer JM. Nutrition in older persons. Basis for functionality and quality of life. Internist (Berl). 2011;52(8):946–54. Ernährung im Alter. Grundlage für den Erhalt von Funktionalität und Lebensqualität.CrossRefGoogle Scholar
  120. 120.
    Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. J Am Med Dir Assoc. 2012; Scholar
  121. 121.
    Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr. 2008;87(1):150–5.PubMedGoogle Scholar
  122. 122.
    Dreyer HC, Volpi E. Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J Am Coll Nutr. 2005;24(2):140S–5S.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Paddon-Jones D, Sheffield-Moore M, Katsanos CS, Zhang XJ, Wolfe RR. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp Gerontol. 2006;41(2):215–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr. 2005;82(5):1065–73.PubMedGoogle Scholar
  125. 125.
    Brotto M, Abreu EL. Sarcopenia: pharmacology of today and tomorrow. J Pharmacol Exp Ther. 2012;343(3):540–6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ledl-Kurkowski E, Niebauer J. Doping und seine Auswirkungen auf das vaskuläre System. J Kardiol. 2009;16(9–10):345–50.Google Scholar
  127. 127.
    vandenBerg P, Neumark-Sztainer D, Cafri G, Wall M. Steroid use among adolescents: longitudinal findings from Project EAT. Pediatrics. 2007;119(3):476–86.PubMedCrossRefGoogle Scholar
  128. 128.
    Clasing D. Doping – verbotene Arzneimittel im Sport. Stuttgart: Gustav Fischer; 1992.Google Scholar
  129. 129.
    Evans NA. Current concepts in anabolic-androgenic steroids. Am J Sports Med. 2004;32(2):534–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Wood RI, Stanton SJ. Testosterone and sport: current perspectives. Horm Behav. 2012;61(1):147–55.PubMedCrossRefGoogle Scholar
  131. 131.
    Rooks D, Praestgaard J, Hariry S, Laurent D, Petricoul O, Perry RG, et al. Treatment of sarcopenia with Bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. J Am Geriatr Soc. 2017;65(9):1988–95.PubMedCrossRefGoogle Scholar
  132. 132.
    Beveridge LA, Ramage L, McMurdo ME, George J, Witham MD. Allopurinol use is associated with greater functional gains in older rehabilitation patients. Age Ageing. 2013;42(3):400–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Lynch JE, Henderson NR, Ramage L, McMurdo ME, Witham MD. Association between statin medication use and improved outcomes during inpatient rehabilitation in older people. Age Ageing. 2012;41(2):260–2.PubMedCrossRefGoogle Scholar
  134. 134.
    Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet. 2009;374(9696):1196–208.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Christensen K, Thinggaard M, McGue M, Rexbye H, Hjelmborg JV, Aviv A, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Brito LB, Ricardo DR, Araujo DS, Ramos PS, Myers J, Araujo CG. Ability to sit and rise from the floor as a predictor of all-cause mortality. Eur J Prev Cardiol. 2014;21(7):892–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc. 2012;13(2):121–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Janssen I. Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc. 2006;54(1):56–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.PubMedCrossRefGoogle Scholar
  141. 141.
    Cesari M, Pahor M, Lauretani F, Zamboni V, Bandinelli S, Bernabei R, et al. Skeletal muscle and mortality results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2009;64(3):377–84.PubMedCrossRefGoogle Scholar
  142. 142.
    Ruiz JR, Sui X, Lobelo F, Morrow JR Jr., Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.PubMedCrossRefGoogle Scholar
  143. 143.
    Clark BC, Manini TM. Sarcopenia \(\neq\) dynapenia A Biol Sci Med Sci. 2008;63(8):829–34.PubMedCrossRefGoogle Scholar
  144. 144.
    Di Nisio M, Di Iorio A, Porreca E, Abate M, Ferrante N, Bandinelli S, et al. Obesity, poor muscle strength, and venous thromboembolism in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2011;66(3):320–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Kyrle PA, Minar E, Bialonczyk C, Hirschl M, Weltermann A, Eichinger S. The risk of recurrent venous thromboembolism in men and women. N Engl J Med. 2004;350(25):2558–63.PubMedCrossRefGoogle Scholar
  146. 146.
    Oger E. Incidence of venous thromboembolism: a community-based study in Western France. EPI-GETBP Study Group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83(5):657–60.PubMedGoogle Scholar
  147. 147.
    Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–93.PubMedCrossRefGoogle Scholar
  148. 148.
    Stein PD, Hull RD, Kayali F, Ghali WA, Alshab AK, Olson RE. Venous thromboembolism according to age: the impact of an aging population. Arch Intern Med. 2004;164(20):2260–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithm (QThrombosis) to estimate future risk of venous thromboembolism: prospective cohort study. BMJ. 2011;343:d4656.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Keller K, Beule J, Coldewey M, Dippold W, Balzer JO. Impact of advanced age on the severity of normotensive pulmonary embolism. Heart Vessels. 2015;30(5):647–56.PubMedCrossRefGoogle Scholar
  151. 151.
    Owen BA, Xue A, Heit JA, Owen WG. Procoagulant activity, but not number, of microparticles increases with age and in individuals after a single venous thromboembolism. Thromb Res. 2011;127(1):39–46.PubMedCrossRefGoogle Scholar
  152. 152.
    Engbers MJ, van Hylckama Vlieg A, Rosendaal FR. Venous thrombosis in the elderly: incidence, risk factors and risk groups. J Thromb Haemost. 2010;8(10):2105–12.PubMedCrossRefGoogle Scholar
  153. 153.
    Lavie CJ, Carbone S, Agarwal MA. An obesity paradox with myocardial infarction in the elderly. Nutrition. 2017; Scholar
  154. 154.
    Keller K, Munzel T, Ostad MA. Sex-specific differences in mortality and the obesity paradox of patients with myocardial infarction ages >70 y. Nutrition. 2017; Scholar
  155. 155.
    Roubenoff R. Sarcopenia and its implications for the elderly. Eur J Clin Nutr. 2000;54(Suppl 3):S40–S7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Centrum Thrombosis and Haemostasis, University Medical Center MainzJohannes Gutenberg-University MainzMainzGermany
  2. 2.Center for Cardiology, University Medical Center MainzJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations