Wiener Medizinische Wochenschrift

, Volume 167, Issue 7–8, pp 169–176 | Cite as

Mechanisms on spasmolytic and anti-inflammatory effects of a herbal medicinal product consisting of myrrh, chamomile flower, and coffee charcoal

  • Cica Vissiennon
  • Karl-Heinz Goos
  • Jürgen Arnhold
  • Karen Nieber
main topic

Summary

Inflammatory bowel disease or irritable bowel syndrome are chronic gastrointestinal disorders which are associated with a lifelong therapeutic need. The disease results in physical, psychological, and social problems with an impact on partnership, sexuality, education, and career. Thus, the number of patients and health care professionals relying on traditional and complementary medicines and especially phytotherapy for the treatment of these chronic conditions is increasing over recent years. One traditional herbal medicinal product consisting of chamomile flower, myrrh, and coffee charcoal has been widely used in clinical practice within this indication area. Long-term experience and an increasing understanding of the pharmacological mechanisms substantiate its application and clinical effectiveness. Mainly the spasmolytic and anti-inflammatory effects provide a rationale for its therapeutic application. In addition, synergistic effects between the herbal components contribute to the overall effect of this medication.

Keywords

Inflammatory bowel disease Intestinal motility Chamomile flower Myrrh Coffee charcoal 

Spasmolytische und antiinflammatorische Wirkmechanismen eines pflanzlichen Arzneimittels bestehend aus Myrrhe, Kamillenblüten und Kaffeekohle

Zusammenfassung

Chronisch-entzündliche Darmerkrankungen und das Reizdarmsyndrom sind chronische Erkrankungen des Gastrointestinaltrakts, welche meist lebenslang therapiert werden müssen. Aufgrund der Erkrankung ergeben sich für die Betroffenen meist körperliche, psychische und soziale Probleme, welche sich negativ auf Partnerschaft, Sexualität, Ausbildung und Beruf auswirken. Aus diesem Grund greifen immer mehr Patienten und Ärzte auf Komplementär- und Alternativmedizin zurück, und insbesondere die Phytotherapie hat sich in den letzten Jahren in der Behandlung dieser chronischen Erkrankungen etabliert. Ein traditionell angewendetes pflanzliches Arzneimittel, bestehend aus Kamillenblüten, Myrrhe und Kaffeekohle (Myrrhinil-Intest®) wird in diesem Indikationsgebiet bereits seit mehreren Jahrzehnten erfolgreich eingesetzt. Die klinische Wirksamkeit und gute Verträglichkeit des Präparats ist durch langjährige Erfahrung und ein immer besseres Verständnis der zugrundeliegenden pharmakologischen Wirkmechanismen gesichert. Insbesondere spasmolytische und antiinflammatorische Wirkstrategien der pflanzlichen Komponenten begründen den erfolgreichen Einsatz im klinischen Alltag. Synergistische Effekte zwischen den pflanzlichen Bestandteilen tragen zur nachgewiesenen Wirksamkeit des Kombinationspräparats bei.

Schlüsselwörter

Entzündliche Darmerkrankung Darmmotilität Kamillenblüten Myrrhe Kaffeekohle 

References

  1. 1.
    Vind I, et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 2003–2005: a population-based study from the Danish Crohn colitis database. Am J Gastroenterol. 2006;101(6):1274–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Sina C, et al. The German competence network inflammatory bowel disease (KNCED) – network research leads to the identification of the cause of disease and to the improvement in patient care. Med Klin (Munich). 2006;101(2):161–5.CrossRefGoogle Scholar
  3. 3.
    Knoflach P. Chronisch entzündliche Darmerkrankungen: Neues zur Ätiopathogenese. J Gastroenterol Hepatol Erkrank. 2014;12(3):7–10.Google Scholar
  4. 4.
    Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6(1):21–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation. 2010;7:37.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moser G. Bedeutung von Stress und Depression bei chronisch entzündlichen Darmerkrankungen. J Gastroenterol Hepatol Erkrank. 2015;3(2):26–30.Google Scholar
  8. 8.
    Langhorst J, et al. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J Crohns Colitis. 2015;9(1):86–106.CrossRefPubMedGoogle Scholar
  9. 9.
    Hilsden RJ, et al. Use of complementary and alternative medicine by patients with Inflammatory Bowel Disease. Inflamm Bowel Dis. 2011;17(2):655–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Ng SC, et al. Systematic review: the efficacy of herbal therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38(8):854–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Wagner H. Multitarget therapy – the future of treatment for more than just functional dyspepsia. Phytomedicine. 2006;13:122–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Albrecht U, et al. Efficacy and safety of a herbal medicinal product containing myrrh, chamomile and coffee charcoal for the treatment of gastrointestinal disorders: a non-interventional study. BMJ Open Gastroenterol. 2014;1(1):e000015. doi:10.1136/bmjgast-2014-000015.CrossRefPubMedGoogle Scholar
  13. 13.
    Stange R, et al. Günstiger Verlauf einer schweren Colitis ulcerosa. Forsch Komplementmed. 2004;5(6):296–9.CrossRefGoogle Scholar
  14. 14.
    Gruia FS. Das Phytotherapeutikum Myrrhinil-Intest® bei unspezifischen Darmerkrankungen. Erfahrungsheilkunde. 1987;2:77–82.Google Scholar
  15. 15.
    Langhorst J, et al. Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis – a double-blind, double-dummy study. Aliment Pharmacol Ther. 2013;38(5):490–500.CrossRefPubMedGoogle Scholar
  16. 16.
    Malykhina AP, Akbarali HI. Inflammation-induced “channelopathies” in the gastrointestinal smooth muscle. Cell Biochem Biophys. 2004;41(2):319–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Srinath AI, et al. Pain management in patients with inflammatory bowel disease: insights for the clinician. Therap Adv Gastroenterol. 2012;5(5):339–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vissiennon C. In vitro studies on the mechanisms of action of chamomile, myrrh and coffee charcoal: components of a traditional herbal medicinal product (Myrrhinil-Intest®). Dissertation. Leipzig: Universität Leipzig; 2014.Google Scholar
  19. 19.
    Pumnea T, et al. The herbal extracts of Myrrh, Chamomile and Coffee Charcoal modulate intestinal neurotransmission and motility in murine small intestine. Phytomedicine in preparationGoogle Scholar
  20. 20.
    Schilcher H. Die Kamille. Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1987.Google Scholar
  21. 21.
    Achterrath-Tuckermann U, et al. Pharmakologische Untersuchungen von Kamillen-Inhaltsstoffen. Planta Med. 1980;39(05):38–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Mehmood MH, et al. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K(+)-channels activation. BMC Complement Altern Med. 2015;15:75.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sebai H, et al. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol. 2014;152(2):327–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Vissiennon C, et al. Calcium antagonistic effects of ethanolic myrrh extract in inflamed intestinal smooth muscle preparations. Planta Med. 2013; doi:10.1055/s-0033-1351895.Google Scholar
  25. 25.
    Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg. 1998;22(4):382–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Al-Hindawi MK, et al. Anti-inflammatory activity of some Iraqi plants using intact rats. J Ethnopharmacol. 1989;26(2):163–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Gerritsen ME, et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol. 1995;147(2):278.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Della Loggia R, et al. Evaluation of the anti-inflammatory activity of chamomile preparations. Planta Med. 1990;56(06):657–8.CrossRefGoogle Scholar
  29. 29.
    Tubaro A, et al. Evaluation of antiinflammatory activity of a chamomile extract topical application. Planta Med. 1984;50(4):359.CrossRefGoogle Scholar
  30. 30.
    Bhaskaran N, et al. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. Int J Mol Med. 2010;26(6):935–40.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Menghini L, et al. An hydroalcoholic chamomile extract modulates inflammatory and immune response in HT29 cells and isolated rat colon. Phytother Res. 2016;30(9):1513–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Srivastava JK, Pandey M, Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci. 2009;85(19–20):663–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ammon HP, Sabieraj J, Kaul R. Kamille. Mechanismus der antiphlogistischen Wirkung von Kamillenextrakten und -inhaltsstoffen. Dtsch Apoth Ztg. 1996;136:1821–34.Google Scholar
  34. 34.
    Rocha NFM, et al. Anti-nociceptive and anti-inflammatory activities of (−)-alpha-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(6):525–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Vissiennon C, et al. Chamomile flower, myrrh and coffee charcoal, components of a traditional herbal medicinal product, diminish pro-inflammatory activation in human macrophages. Z Phytother. 2016. doi:10.1055/s-0036-1584491.Google Scholar
  36. 36.
    Su S, et al. Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J Ethnopharmacol. 2011;134(2):251–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Su S, et al. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J Ethnopharmacol. 2012;139(2):649–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Tariq M, et al. Anti-inflammatory activity of Commiphora molmol. Agents Actions. 1986;17(3–4):381–2.CrossRefPubMedGoogle Scholar
  39. 39.
    Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol. 1998;60(2):117–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Shalaby MA, Hammouda AA-E. Analgesic, anti-inflammatory and anti-hyperlipidemic activities of Commiphora molmol extract (Myrrh). J Intercult Ethnopharmacol. 2014;3(2):56–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fatani AJ, et al. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Exp Ther Med. 2016;12(2):730–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Tipton DA, et al. In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicol In Vitro. 2003;17(3):301–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Tipton DA, Hamman NR, Dabbous MK. Effect of myrrh oil on IL-1beta stimulation of NF-kappaB activation and PGE(2) production in human gingival fibroblasts and epithelial cells. Toxicol In Vitro. 2006;20(2):248–55.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim M‑S, et al. Myrrh inhibits LPS-induced inflammatory response and protects from cecal ligation and puncture-induced sepsis. Evid Based Complement Alternat Med. 2012;2012(3):1–11.Google Scholar
  45. 45.
    Karp LC, Shanahan F, Targan SR. (editors) Inflammatory bowel disease. From bench to bedside. Norwell: Springer; 2005.Google Scholar
  46. 46.
    Koshihara Y, et al. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim Biophys Acta. 1984;792(1):92–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Nardini M, et al. In vitro inhibition of the activity of phosphorylase kinase, protein kinase C and protein kinase A by caffeic acid and a procyanidin-rich pine bark (Pinus marittima) extract. Biochim Biophys Acta. 2000;1474(2):219–25.CrossRefPubMedGoogle Scholar
  48. 48.
    Feng R, et al. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005;280(30):27888–95.CrossRefPubMedGoogle Scholar
  49. 49.
    Yang WS, et al. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm. 2013;2013(1):1–12.Google Scholar
  50. 50.
    Bone K, Mills S. Principles of herbal pharmacology. In: Bone K, Mills S, editors. Principles and practice of phytotherapy. Amsterdam: Elsevier; 2013. pp. 17–82.Google Scholar
  51. 51.
    Berenbaum MC. What is synergy? Pharmacol Rev. 1989;41(2):93–141.PubMedGoogle Scholar
  52. 52.
    Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.CrossRefPubMedGoogle Scholar
  53. 53.
    Fu J, et al. Drug combination in vivo using combination index method. Taxotere and T607 against colon carcinoma HCT-116 xenograft tumor in nude mice. Synergy. 2016;3(3):15–30.CrossRefGoogle Scholar
  54. 54.
    Vissiennon C, et al. Synergistic interactions of chamomile flower, myrrh and coffee charcoal in inhibiting pro-inflammatory chemokine release from activated human macrophages. Synergy, in preparationGoogle Scholar
  55. 55.
    Kopydlowski KM, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol. 1999;163(3):1537–44.PubMedGoogle Scholar
  56. 56.
    Berkman N, et al. Inhibition of macrophage inflammatory protein-1 alpha expression by IL-10. Differential sensitivities in human blood monocytes and alveolar macrophages. J Immunol. 1995;155(9):4412–8.PubMedGoogle Scholar
  57. 57.
    Carlsen HS, et al. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004;104(10):3021–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Ansel K, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol. 2001;13(2):172–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Cica Vissiennon
    • 2
    • 3
  • Karl-Heinz Goos
    • 2
  • Jürgen Arnhold
    • 3
  • Karen Nieber
    • 1
  1. 1.Institute of PharmacyUniversity of LeipzigLeipzigGermany
  2. 2.REPHA GmbH Biologische ArzneimittelLangenhagenGermany
  3. 3.Medical Faculty, Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations