Wiener Medizinische Wochenschrift

, Volume 166, Issue 13–14, pp 447–452 | Cite as

Eisenmangel, Müdigkeit und Restless-Legs-Syndrom

themenschwerpunkt

Zusammenfassung

Eisenmangel ohne Anämie ist ein weit verbreitetes Gesundheitsproblem, welches oft unentdeckt bleibt. Klinisch stehen neurologische und psychopathologische Probleme wie Müdigkeit und Konzentrationsschwäche im Vordergrund, aber auch in der Entstehung von Restless-Legs-Syndrom (RLS) spielt Eisenmangel eine entscheidende Rolle.

Die genaue Pathogenese ist oft nicht bekannt, jedoch weiß man, dass Eisen an verschiedenen zentralen Stoffwechselprozessen im Körper beteiligt ist. Insbesondere bei Fatigue und RLS geht man von einer reduzierten Aktivität der Tyrosinhydroxylase aus – einem zentralen eisenabhängigen Element der Dopaminsynthese – wodurch es zu Mangelzuständen kommen kann.

Im Rahmen der Therapie gilt die orale Eisengabe als Eckpfeiler der Substitutionstherapie, da sie besonders kostengünstig und sicher ist. Die parenterale Eisenbehandlung ist indiziert, falls die primäre orale Therapie nicht erfolgreich ist oder nicht toleriert wird. Zum Auffüllen der Eisenspeicher werden etwa 500–1000 mg benötigt. Diese können fraktioniert in Dosen von 200 mg (Fe-Saccharose) oder bei Fe-Carboxymaltose auch in 1–2 Einzeldosen appliziert werden. Eine Kontrolle des Ferritinspiegels sollte frühestens 8 Wochen nach der letzten parenteralen Verabreichung erfolgen.

Schlüsselwörter

Eisenmangel Müdigkeit Restless-Legs-Syndrom 

Iron deficiency, Fatigue and Restless-Legs-Syndrome

Summary

Iron deficiency without anaemia is a widespread health problem that often remains undetected. In this context, neurological and psychopathological problems like fatigue and poor concentration are a major issue, but also in Restless-Legs-Syndrome (RLS) iron deficiency is a key element.

The exact pathogenesis is often unknown, however, it is known that iron is involved in several very important metabolic processes in the human body. In particular when it comes to fatigue and RLS, it’s assumed that reduced activity of tyrosine hydroxylase – a central iron-dependent element of dopamine synthesis – can lead to deficiencies.

As part of the therapy, oral iron supplementation is considered to be treatment of choice since it’s most cost-effective and well tolerated. Intravenous iron treatment is indicated if primary attempts were not sufficient or not tolerated. To successfully replenish iron storages, about 500–1000 mg are needed. Doses of 200 mg can be administered (iron sucrose) or 1–2 single doses as for ferric carboxymaltose. A check of ferritin-levels not earlier than 8 weeks after last administration is recommended.

Keywords

Iron deficiency Fatigue Restless-Legs-Syndrome 

Literatur

  1. 1.
    Bates DW, Schmitt W, Buchwald D, Ware NC, Lee J, Thoyer E, et al. Prevalence of fatigue and chronic fatigue syndrome in a primary care practice. Arch Intern Med. 1993;153(24):2759–65.CrossRefPubMedGoogle Scholar
  2. 2.
    Cathébras PJ, Robbins JM, Kirmayer LJ, Hayton BC. Fatigue in primary care: prevalence, psychiatric comorbidity, illness behavior, and outcome. J Gen Intern Med. 1992;7(3):276–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Kroenke K, Arrington ME, Mangelsdorff AD. The prevalence of symptoms in medical outpatients and the adequacy of therapy. Arch Intern Med. 1990;150(8):1685–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Krayenbuehl P‑A, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Beutler E, Larsh SE, Gurney CW. Iron therapy in chronically fatigued, nonanemic women: a double-blind study. Ann Intern Med. 1960;52:378–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Favrat B, Balck K, Breymann C, Hedenus M, Keller T, Mezzacasa A, et al. Evaluation of a single dose of ferric carboxymaltose in fatigued, iron-deficient women – PREFER a randomized, placebo-controlled study. PLoS ONE. 2014;9(4):e94217.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat Rev Gastroenterol Hepatol. 2010;7(11):599–610.PubMedGoogle Scholar
  8. 8.
    Gasche C, Lomer MCE, Cavill I, Weiss G. Iron, anaemia, and inflammatory bowel diseases. Gut. 2004;53(8):1190–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fehr J, Favrat B, Schleiffenbaum B, Krayenbühl PA, Kapanci C, von Orelli F. Diagnosis and treatment of iron deficiency without anaemia. Praxis. 2009;98(24):1445–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Brownlie T, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr. 2002;75(4):734–42.PubMedGoogle Scholar
  11. 11.
    Hercberg S, Preziosi P, Galan P. Iron deficiency in Europe. Public Health Nutr. 2001;4(2B):537–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Galan P, Yoon HC, Preziosi P, Viteri F, Valeix P, Fieux B, et al. Determining factors in the iron status of adult women in the SU.VI.MAX study. SUpplementation en VItamines et Minéraux AntioXydants. Eur J Clin Nutr. 1998;52(6):383–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Evstatiev R, Gasche C. Iron sensing and signalling. Gut. 2012;61(6):933–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Meyer-Klaucke W, Winkler H, Schünemann V, Trautwein AX, Nolting HF, Haavik Mössbauer J. electron-paramagnetic-resonance and X‑ray-absorption fine-structure studies of the iron environment in recombinant human tyrosine hydroxylase. Eur J Biochem. 1996;241(2):432–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Verdon F, Burnand B, C‑LF S, Bonard C, Graff M, Michaud A, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003;326(7399):1124.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    http://www.iron.medline.ch/Eisenplattform/signif ikante_verbesserung_102.jpg. Originalquelle: Favrat B, et al. Evaluation of a single dose of ferric carboxymaltose in fatigued, iron-deficient women – PREFER a randomized, placebo-controlled study. PLoS One. 2014;9(4):e94217.
  17. 17.
    Martius F. Eisenmangel ohne Anämie – ein heißes Eisen? Schweiz Med Forum. 2009;915(299):16294–9.Google Scholar
  18. 18.
    Mathis J. Restless legs und nächtlicher Myoklonus. Schweiz Arch Neurol Psychiatr. 1999;150(4):176–88.Google Scholar
  19. 19.
    Happe S, Reese JP, Stiasny-Kolster K, Peglau I, Mayer G, Klotsche J, et al. Assessing health-related quality of life in patients with restless legs syndrome. Sleep Med. 2009;10(3):295–305.CrossRefPubMedGoogle Scholar
  20. 20.
    Berger K, Luedemann J, Trenkwalder C, John U, Kessler C. Sex and the risk of restless legs syndrome in the general population. Arch Intern Med. 2004;164(2):196–202.CrossRefPubMedGoogle Scholar
  21. 21.
    Hening W, Walters AS, Allen RP, Montplaisir J, Myers A, Ferini-Strambi L. Impact, diagnosis and treatment of restless legs syndrome (RLS) in a primary care population: the REST (RLS epidemiology, symptoms, and treatment) primary care study. Sleep Med. 2004;5(3):237–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Allen RP, Auerbach S, Bahrain H, Auerbach M, Earley CJ. The prevalence and impact of restless legs syndrome on patients with iron deficiency anemia. Am J Hematol. 2013;88(4):261–4.CrossRefPubMedGoogle Scholar
  23. 23.
    O’Keeffe ST, Gavin K, Lavan JN. Iron status and restless legs syndrome in the elderly. Age Ageing. 1994;23(3):200–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Sun ER, Chen CA, Ho G, Earley CJ, Allen RP. Iron and the restless legs syndrome. Sleep. 1998;21(4):371–7.PubMedGoogle Scholar
  25. 25.
    Schmidauer C, Sojer M, Seppi K, Stockner H, Högl B, Biedermann B, et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann Neurol. 2005;58(4):630–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Allen RP, Barker PB, Wehrl F, Song HK, Earley CJ. MRI measurement of brain iron in patients with restless legs syndrome. Neurology. 2001;56(2):263–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Connor JR, Boyer PJ, Menzies SL, Dellinger B, Allen RP, Ondo WG, et al. Neuropathological examination suggests impaired brain iron acquisition in restless legs syndrome. Neurology. 2003;61(3):304–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Snyder AM, Wang X, Patton SM, Arosio P, Levi S, Earley CJ, et al. Mitochondrial ferritin in the substantia nigra in restless legs syndrome. J Neuropathol Exp Neurol. 2009;68(11):1193–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
  30. 30.
    Stiasny-Kolster K, Kohnen R, Möller JC, Trenkwalder C, Oertel WH. Validation of the ‘L-DOPA test’ for diagnosis of restless legs syndrome. Mov Disord Off J Mov Disord Soc. 2006;21:1333–9.Google Scholar
  31. 31.
    Garcia-Borreguero D, Kohnen R, Silber MH, Winkelman JW, Earley CJ, Högl B, et al. The long-term treatment of restless legs syndrome/Willis-Ekbom disease: evidence-based guidelines and clinical consensus best practice guidance: a report from the International Restless Legs Syndrome Study Group. Sleep Med. 2013;14(7):675–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Trenkwalder C, Högl B, Benes H, Kohnen R. Augmentation in restless legs syndrome is associated with low ferritin. Sleep Med. 2008;9(5):572–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Grote L, Leissner L, Hedner J, Ulfberg J. A randomized, double-blind, placebo controlled, multi-center study of intravenous iron sucrose and placebo in the treatment of restless legs syndrome. Mov Disord. 2009;24(10):1445–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Loha for Life, Med. Kompetenzzentrum EisenmangelWienÖsterreich

Personalised recommendations