Wiener Medizinische Wochenschrift

, Volume 165, Issue 19–20, pp 379–386 | Cite as

Smoking, inflammation and small cell lung cancer: recent developments



Small cell lung cancer (SCLC) accounts for 15 % of all lung tumors and represents an invasive neuroendocrine malignancy with poor survival rates. This cancer is highly prevalent in smokers and characterized by inactivation of p53 and retinoblastoma. First in vitro expansion of circulating tumor cells (CTCs) of SCLC patients allowed for investigation of the cell biology of tumor dissemination. In the suggested CTC SCLC model, the primary tumor attracts and educates tumor-promoting and immunosuppressive macrophages which in turn arm CTCs to spread and generate distal lesions. Preexisting inflammatory processes associated with chronic obstructive pulmonary disease (COPD) seem to potentiate the subsequent activity of tumor-associated macrophages (TAM). Activation of signal transducer and activator of transcription 3 (STAT3) and expression of chitinase-3-like 1/YKL-40 in SCLC CTCs seems to be associated with drug resistance. In conclusion, inflammation-associated generation of invasive and chemoresistant CTCs most likely explains the characteristic features of SCLC, namely early dissemination and rapid failure of chemotherapy.


Smoking Small cell lung cancer (SCLC) Metastasis Drug resistance Oncogene Circulating tumor cells 


Das kleinzelliges Lungenkarzinom (SCLC) ist für 15 % der Lungenkarzinome verantwortlich und stellt eine aggressiv wachsende und invasive neuroendokrine maligne Erkrankung dar, die mit niedrigen Überlebensarten verbunden ist. Dieses Karzinom weist eine hohe Inzidenz bei Rauchern auf und ist vor allem durch die Inaktivierung von p53 und Retinoblastom-Gen charakterisiert. Die erstmalige in vitro Kultur von zirkulierenden Tumorzellen (CTCs) von SCLC Patienten ermöglichte die Untersuchung der Zellbiologie der Tumordissemination. Bei dem vorgeschlagenen Modell der SCLC CTCs rekrutiert der Tumor Makrophagen mit einem wachstumsfördernden und immunsuppressiven Phänotyp, der wiederum CTCs hervorbringt, die invasiv Fernmetastasen setzen. Bereits bestehende Entzündungsprozesse durch chronische obstruktive pulmonäre Erkrankung (COPD) scheinen die nachfolgende Aktivität der tumorassoziierten Makrophagen (TAM) zu potenzieren. Die Aktivierung von STAT3 und Chitinase-3-like-1/YKL-40 in den CTCs führt wahrscheinlich zur Chemoresistenz. Zusammenfassend führt die mit Entzündungen verbundene Entwicklung invasiver und chemoresistenter CTCs zu den typischen Charakteristika des kleinzelligen Lungenkarzinoms, nämlich früher Metastasierung und frühem Versagen der Chemotherapie und damit verweist dieses Modell des SCLC auf neue therapeutische Angriffspunkte.


Tabakkonsum Kleinzelliges Lungenkarzinom (SCLC) Chemoresistenz Onkogene Zirkulierende Tumorzellen (CTC) Immuncheckpoint 


  1. 1.
    Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015;121(5):664–72. doi:10.1002/cncr.29098.CrossRefPubMedGoogle Scholar
  2. 2.
    Pietanza MC, Byers LA, Minna JD, et al. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21(10):2244–55. doi:10.1158/1078 – 0432.CCR-14-2958.CrossRefPubMedGoogle Scholar
  3. 3.
    Jiménez Ruiz CA, Ramos Pinedo A, Cicero Guerrero A, et al. Characteristics of COPD smokers and effectiveness and safety of smoking cessation medications. Nicotine Tob Res. 2012;14(9):1035–9. doi:10.1093/ntr/nts001.CrossRefPubMedGoogle Scholar
  4. 4.
    Pleasance ED, Stephens PJ, O’Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463(7278):184–90. doi:10.1038/nature08629.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Pillai RN, Owonikoko TK. Small cell lung cancer: therapies and targets. Semin Oncol. 2014;41(1):133–42. doi:10.1053/j.seminoncol.2013.12.015.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Coleman MP, Allemani C. Cancer: the elephant in the room. Lancet. 2015;385(9973):1047–8. doi:10.1016/S0140-6736(15)60571-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257. doi:10.1038/cddis.2013.428.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Asai N, Ohkuni Y, Kaneko N, et al. Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol. 2014;6(2):69–82. doi:10.1177/1758834013517413.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4(1):36–54. doi:10.3978/j.issn.2218–6751.2014.05.01.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–6. doi:10.1038/ng.2405.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Pietanza MC, Ladanyi M. Bringing the genomic landscape of small-cell lung cancer into focus. Nat Genet. 2012;44(10):1074–5. doi:10.1038/ng.2415.CrossRefPubMedGoogle Scholar
  13. 13.
    Ross JS, Wang K, Elkadi OR, et al. Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol. 2014;67(9):772–6.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Rolfo C, Castiglia M, Hong D, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 2014;1846(2):539–46. doi:10.1016/j.bbcan.2014.10.001.PubMedGoogle Scholar
  15. 15.
    Hamilton G, Burghuber O, Zeillinger R. Circulating tumor cells in small cell lung cancer: ex vivo expansion. Lung. 2015;193(3):451–2. doi:10.1007/s00408-015-9725-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer. Mol Cancer Res. 2014;12(1):3–13. doi:10.1158/1541–7786.MCR-13-0539.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol. 2001;14(7):767–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34. doi:10.1016/j.cell.2012.08.024.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Proctor RN. The cigarette catastrophe continues. Lancet. 2015;385(9972):938–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Lubin JH, Alavanja MC, Caporaso N, et al. Cigarette smoking and cancer risk: modeling total exposure and intensity. Am J Epidemiol. 2007;166(4):479–89.CrossRefPubMedGoogle Scholar
  21. 21.
    Muttarak R, Steiber N, Gallus S. Smoking ban in Austria: a long overdue step but still a lot to be done. Lancet. 2015;385(9972):941–2.CrossRefPubMedGoogle Scholar
  22. 22.
    Travis WD. Pathology and diagnosis of neuroendocrine tumors: lung neuroendocrine. Thorac Surg Clin. 2014;24(3):257–66. doi:10.1016/j.thorsurg.2014.04.001.CrossRefPubMedGoogle Scholar
  23. 23.
    Hensing T, Chawla A, Batra R, et al. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol. 2014;799:85–117. doi:10.1007/978-1-4614-8778-45.CrossRefPubMedGoogle Scholar
  24. 24.
    Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86. doi:10.1016/j.ccm.2013.10.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–51. doi:10.1016/S0140-6736(11)60968-9.CrossRefPubMedGoogle Scholar
  26. 26.
    Punturieri A, Szabo E, Croxton TL, et al. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst. 2009;101(8):554–9. doi:10.1093/jnci/djp023.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. doi:10.3389/fimmu.2014.00435.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735. doi:10.1155/2013/413735.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009;183(4):2867–83. doi:10.4049/jimmunol.0900473.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med. 2012;106(3):319–28. doi:10.1016/j.rmed.2011.11.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Churg A, Dai J, Tai H, Xie C, et al. Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med. 2002;166(6):849–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Létuvé S, Kozhich A, Humbles A, et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am J Pathol. 2010;176(2):638–49. doi:10.2353/ajpath.2010.090455.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Gwyer Findlay E, Hussell T. Macrophage-mediated inflammation and disease: a focus on the lung. Mediators Inflamm. 2012;2012:140937. doi:10.1155/2012/140937.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Cho SJ, Weiden MD, Lee CG. Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol Res. 2015;7(1):14–21. doi:10.4168/aair.2015.7.1.14.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Samadi AK, Bilsland A, Georgakilas AG. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015. doi:10.1016/j.semcancer.2015.03.006. (pii: S1044-579×(15)00021-8)Google Scholar
  39. 39.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi:10.1016/j.cell.2010.01.025.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Walser T, Cui X, Yanagawa J, Lee JM, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5(8):811–5. doi:10.1513/pats.200809-100TH.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008;14(10):1023–4. doi:10.1038/nm1008-1023.CrossRefPubMedGoogle Scholar
  42. 42.
    Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45. doi:10.1038/nrc3477.CrossRefPubMedGoogle Scholar
  43. 43.
    Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105(4):503–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16(7):1047–55. doi:10.1111/j.1440–1843.2011.02019.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Takiguchi Y, Sekine I, Iwasawa S, et al. Chronic obstructive pulmonary disease as a risk factor for lung cancer. World J Clin Oncol. 2014;5(4):660–6. doi:10.5306/wjco.v5.i4.660.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Milara J, Cortijo J. Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des. 2012;18(26):3901–38.CrossRefPubMedGoogle Scholar
  47. 47.
    Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81(4):265–84. doi:10.1159/000324601.CrossRefPubMedGoogle Scholar
  48. 48.
    Cilli A, Ozkaynak C, Onur R, et al. Lung cancer detection with low-dose spiral computed tomography in chronic obstructive pulmonary disease patients. Acta Radiol. 2007;48(4):405–11.CrossRefPubMedGoogle Scholar
  49. 49.
    Heuvers ME, Wisnivesky J, Stricker BH, et al. Generalizability of results from the National Lung Screening Trial. Eur J Epidemiol. 2012;27(9):669–72. doi:10.1007/s10654-012-9720-8.CrossRefPubMedGoogle Scholar
  50. 50.
    Sekine Y, Hata A, Koh E, et al. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment. Gen Thorac Cardiovasc Surg. 2014;62(7):415–21. doi:10.1007/s11748-014-0386-x.CrossRefPubMedGoogle Scholar
  51. 51.
    Tang X, Liu D, Shishodia S, et al. NF-kappaB is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107(11):2637–46.CrossRefPubMedGoogle Scholar
  52. 52.
    Li Z, Guo Y, Jiang H, et al. Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer. 2014;14:276. doi:10.1186/1471-2407-14-276.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136–54. doi:10.1016/j.bbcan.2013.12.005.PubMedGoogle Scholar
  54. 54.
    Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18(26):3831–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen YT, Feng B, Chen LB. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian Pac J Cancer Prev. 2012;13(8):3577–81.CrossRefPubMedGoogle Scholar
  56. 56.
    López-González A, Diz P, et al. The role of anthracyclines in small cell lung cancer. Ann Transl Med. 2013;1(1):5. doi:10.3978/j.issn.2305–5839.2013.01.05.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Murray N. Treatment of small cell lung cancer: the state of the art. Lung Cancer. 1997;17(1):S75–S89.CrossRefPubMedGoogle Scholar
  58. 58.
    Rossi A, Maio M D, Chiodini P, et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol. 2012;30(14):1692–8. doi:10.1200/JCO.2011.40.4905.CrossRefPubMedGoogle Scholar
  59. 59.
    O’Brien ME, Ciuleanu TE, et al. Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. J Clin Oncol. 2006;24(34):5441–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83. doi:10.1093/annonc/mds213.CrossRefPubMedGoogle Scholar
  61. 61.
    Spigel DR, Socinski MA. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J Thorac Oncol. 2013;8(5):587–98. doi:10.1097/JTO.0b013e318286cf88.PubMedGoogle Scholar
  62. 62.
    Sgambato A, Casaluce F, Maione P, et al. Medical treatment of small cell lung cancer: state of the art and new development. Expert Opin Pharmacother. 2013;14(15):2019–31. doi:10.1517/14656566.2013.823401.CrossRefPubMedGoogle Scholar
  63. 63.
    Kalemkerian GP. Advances in pharmacotherapy of small cell lung cancer. Expert Opin Pharmacother. 2014;15(16):2385–96. doi:10.1517/14656566.2014.957180.CrossRefPubMedGoogle Scholar
  64. 64.
    William WN Jr, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol. 2011;8(10):611–9. doi:10.1038/nrclinonc.2011.90.CrossRefPubMedGoogle Scholar
  65. 65.
    Verhelst K, Verstrepen L, Carpentier I, et al. IkB kinase e (IKKe): a therapeutic target in inflammation and cancer. Biochem Pharmacol. 2013;85(7):873–80. doi:10.1016/j.bcp.2013.01.007.CrossRefPubMedGoogle Scholar
  66. 66.
    Erstad DJ, Cusack JC Jr. Targeting the NF-κB pathway in cancer therapy.  Surg Oncol Clin N Am. 2013;22(4):705-46. doi: 10.1016/j.soc.2013.06.011.Google Scholar
  67. 67.
    Spitzner M, Ebner R, Wolff HA, et al. STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers (Basel). 2014;6(4):1986–2011. doi:10.3390/cancers6041986.CrossRefGoogle Scholar
  68. 68.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809. doi:10.1038/nrc2734.CrossRefPubMedGoogle Scholar
  69. 69.
    Kennedy BC, Showers CR, Anderson DE, et al. Tumor-associated macrophages in glioma: friend or foe? J Oncol. 2013;2013:486912. doi:10.1155/2013/486912.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–84. doi:10.1158/1541 – 7786.MCR-07-2180.CrossRefPubMedGoogle Scholar
  71. 71.
    Yu H, Lee H, Herrmann A, Buettner R, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46. doi:10.1038/nrc3818.CrossRefPubMedGoogle Scholar
  72. 72.
    Li Y, Du H, Qin Y, et al. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007;67(18):8494–503.CrossRefPubMedGoogle Scholar
  73. 73.
    Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2015. doi:10.1038/onc.2015.150.Google Scholar
  74. 74.
    Singh SK, Bhardwaj R, Wilczynska KM, et al. A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J Biol Chem. 2011;286(46):39893–903. doi:10.1074/jbc.M111.257451.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23. doi:10.1373/clinchem.2014.222679.CrossRefPubMedGoogle Scholar
  76. 76.
    Board RE, Williams VS, Knight L, et al. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Ann N Y Acad Sci. 2008;1137:98–107. doi:10.1196/annals.1448.020.CrossRefPubMedGoogle Scholar
  77. 77.
    Cayrefourcq L, Mazard T, Joosse S, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75:892–901. doi:10.1158/0008-5472.CAN-14-2613.CrossRefPubMedGoogle Scholar
  78. 78.
    Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20. doi:10.1126/science.1253533.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Hamilton G, Rath B, Burghuber O. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res. 2015;4(3):287-91. doi:10.3978/j.issn.2218–6751.2015.04.04.PubMedGoogle Scholar
  80. 80.
    Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20:897–903. doi:10.1038/nm.3600.CrossRefPubMedGoogle Scholar
  81. 81.
    Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57:99–105. doi:10.1007/s12026-013-8459-y.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Junker N, Johansen JS, Andersen CB, et al. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer. 2005;48(2):223–31.CrossRefPubMedGoogle Scholar
  83. 83.
    Iwamoto FM, Hormigo A. Unveiling YKL-40, from serum marker to target therapy in glioblastoma. Front Oncol. 2014;4:90. doi:10.3389/fonc.2014.00090.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Ji RC. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 2012;69(6):897–914. doi:10.1007/s00018-011-0848-6.CrossRefPubMedGoogle Scholar
  85. 85.
    Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133 + cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65. doi:10.1158/0008-5472.CAN-13-1541.CrossRefPubMedGoogle Scholar
  86. 86.
    Hamilton G, Olszewski U. Chemotherapy-induced enrichment of cancer stem cells in lung cancer. J Bioanal Biomed. 2013;S9:003. doi:10.4172/1948-593X.S9-003.Google Scholar
  87. 87.
    Davis A, Tinker AV, Friedlander M. “Platinum resistant” ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol. 2014;133(3):624–31. doi:10.1016/j.ygyno.2014.02.038.CrossRefPubMedGoogle Scholar
  88. 88.
    Sherry MM, Reeves A, Wu JK, et al. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27(10):2383–92. doi:10.1002/stem.185.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205. doi:10.1111/j.1365–2249.2011.04515.x.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of SurgeryMedical University of ViennaViennaAustria
  2. 2.Ludwig Boltzmann Cluster of Translational OncologyViennaAustria

Personalised recommendations