Wiener Medizinische Wochenschrift

, Volume 164, Issue 11–12, pp 228–238

(Hoch-)intensives Intervalltraining mit Kindern und Jugendlichen im Nachwuchsleistungssport

review

Zusammenfassung

Um die Effektivität von (Hoch-)inten­sivem Intervalltraining (HIIT) im Nachwuchsleistungssport und bei untrainierten gesunden Kindern und Jugendlichen in der wissenschaftlichen Literatur einzuschätzen, wurde eine computerbasierte Literaturrecherche in den elektronischen Datenbanken PubMed, MEDLINE, SPORTDiscus und Web of Science durchgeführt. Studien, welche die Auswirkungen von HIIT-Interventionen auf die Leistungsfähigkeit von Kindern und Jugendlichen (9–18 Jahre) anhand von Analysen der motorischen oder leistungsphysiologischen Kenngrößen der Probanden, vor und nach der Trainingsintervention, analysierten, wurden berücksichtigt. Die Ergebnisse zeigten eine Verbesserung aerober und anaerober Leistungsparameter bei einer Anwendung von zwei bis drei Einheiten HIIT pro Woche über einen Zeitraum von fünf bis zehn Wochen, zusätzlich zum normalen Training. Langzeitstudien zu HIIT, welche auf langfristige Trainingseffekte hinweisen, fehlen. Darüber hinaus wurde aufgrund von physiologischen Besonderheiten während HIIT-Protokollen eine verbesserte Ermüdungsresistenz bei Kindern im Vergleich zu Erwachsenen belegt, was als gute Voraussetzung für die Anwendbarkeit von HIIT bei Kindern interpretiert werden kann.

Schlüsselwörter

Hoch intensives Training Ausdauer Anpassungserscheinungen Kinder und Jugendliche Trainingseffekte 

High-intensity interval training for young athletes

Summary

A computer-based literature research during July 2013 using the electronic databases PubMed, MEDLINE, SPORTDiscus and Web of Science was performed to assess the effect of the high intensity interval training (HIIT) on sport performance in healthy children and adolescents. Studies examining the effect of HIIT on aerobic and anaerobic performance pre and post to HIIT-Interventions in children and adolescents (9–18 years) were included. The results indicate increased aerobic and anaerobic performance following two or three HIIT sessions per week for a period of five to ten weeks, additional to normal training. Results regarding long term effects following HIIT have not been documented so far. In addition, due to the physiological characteris-tics during HIIT protocols improved fatigue resistance has been demonstrated in children as compared to adults, which may be interpreted as a prerequisite for the applicability of HIIT in children.

Keywords

High intensity training Endurance Adaptions Children and adolescents Performance improvements 

Literatur

  1. 1.
    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl. 2):1–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Sperlich B, Hoppe MW, Haegele M. Ausdauertraining – Dauermethode versus intensive Intervallmethode im Fußball: Endurance Exercise – High Volume vs. High-Intensity Interval Training in Soccer. Deutsche Zeitschrift für Sportmedizin. 2013;65(1):10–7.Google Scholar
  3. 3.
    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Wahl P, Hägele M, Zinner C, et al. High Intensity Training (HIT) für die Verbesserung der Ausdauerleistungsfähigkeit von Normalpersonen und im Präventions- & Rehabilitationsbereich. Wien Med Wochenschr. 2010;160(23–24):627–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Reindell H, Roskamm H. Ein Beitrag zu den physiologischen Grundlagen des Intervalltrainings unter besonderer Berücksichtigung des Kreislaufs. Schweiz Z Sportmed. 1959;7:1–8.Google Scholar
  8. 8.
    Chamari K, Hachana Y, Kaouech F, et al. Endurance training and testing with the ball in young elite soccer players. Br J Sports Med. 2005;39(1):24–8.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Faude O, Meyer T, Scharhag J, et al. Volume vs. intensity in the training of competitive swimmers. Int J Sports Med. 2008;29(11):906–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Helgerud J, Engen LC, Wisloff U, et al. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33(11):1925–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Impellizzeri FM, Marcora SM, Castagna C, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27(6):483–92.PubMedCrossRefGoogle Scholar
  12. 12.
    McMillan K, Helgerud J, Macdonald R, et al. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med. 2005;39(5):273–7.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sperlich B, De Marées M, Koehler K, et al. Effects of 5 weeks of high-intensity interval training vs. volume training in 14-year-old soccer players. J Strength Cond Res. 2011;25(5):1271–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Sperlich B, Zinner C, Heilemann I, et al. High-intensity interval training improves VO (2peak), maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers. Eur J Appl Physiol. 2010;110(5):1029–36.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Breil FA, Weber SN, Koller S, et al. Block training periodization in alpine skiing: effects of 11-day HIT on VO2max and performance. Eur J Appl Physiol. 2010;109(6):1077–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Wahl P, Zinner C, Grosskopf C, et al. Passive recovery is superior to active recovery during a high-intensity shock microcycle. J Strength Cond Res. 2013;27(5):1384–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Katch VL. Physical conditioning of children. J Adolesc Health Care. 1983;3(4):241–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Weineck J. Optimales Training: Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings. 15. Aufl. Balingen: Spitta; 2007.Google Scholar
  19. 19.
    Zintl F, Eisenhut A. Ausdauertraining: Grundlagen, Methoden, Trainingssteuerung. 7. Aufl. München: Blv; 2009.Google Scholar
  20. 20.
    McManus AM, Armstrong N, Williams CA. Effect of training on the aerobic power and anaerobic performance of prepubertal girls. Acta Paediatr. 1997;86(5):456–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Buchheit M, Laursen PB, Kuhnle J, et al. Game-based training in young elite handball players. Int J Sports Med. 2009;30(4):251–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Delextrat A, Martinez A Small-sided game training improves aerobic capacity and technical skills in basketball players. Int J Sports Med. In press 2013. doi:10.1055/s-0033-1349107.Google Scholar
  23. 23.
    Baquet G, Berthoin S, Dupont G, et al. Effects of high intensity intermittent training on peak VO(2) in prepubertal children. Int J Sports Med. 2002;23(6):439–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Falk B, Dotan R. Child-adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev. 2006;34(3):107–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Ratel S, Duché P, Williams CA. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006;36(12):1031–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Zafeiridis A, Dalamitros A, Dipla K, et al. Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc. 2005;37(3):505–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Dipla K, Tsirini T, Zafeiridis A, et al. Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol. 2009;106(5):645–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Kanehisa H, Okuyama H, Ikegawa S, et al. Fatigability during repetitive maximal knee extensions in 14-year-old boys. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):170–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Paraschos I, Hassani A, Bassa E, et al. Fatigue differences between adults and prepubertal males. Int J Sports Med. 2007;28(11):958–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Hebestreit H, Mimura K, Bar-Or O. Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol. 1993;74(6):2875–80.PubMedGoogle Scholar
  31. 31.
    Beneke R, Hütler M, Jung M, et al. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol. 2005;99(2):499–504.PubMedCrossRefGoogle Scholar
  32. 32.
    Falgairette G, Bedu M, Fellmann N, et al. Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol Occup Physiol. 1991;62(3):151–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Ratel S, Duche P, Hennegrave A, et al. Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol. 2002;92(2):479–85.PubMedGoogle Scholar
  34. 34.
    Buchheit M, Duché P, Laursen PB, et al. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Dotan R, Ohana S, Bediz C, et al. Blood lactate disappearance dynamics in boys and men following exercise of similar and dissimilar peak-lactate concentrations. J Pediatr Endocrinol Metab. 2003;16(3):419–29.PubMedCrossRefGoogle Scholar
  36. 36.
    Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children’s biopsies. Neurology. 1969;19(6):591–605.PubMedCrossRefGoogle Scholar
  37. 37.
    Hebestreit H, Meyer F, Htay-Htay, et al. Plasma metabolites, volume and electrolytes following 30-s high-intensity exercise in boys and men. Eur J Appl Physiol Occup Physiol. 1996;72(5–6):563–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bell RD, MacDougall JD, Billeter R, et al. Muscle fiber types and morphometric analysis of skeletal muscle in six-year-old children. Med Sci Sports Exerc. 1980;12(1):28–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Jansson E. Age-related fiber type changes in human skeletal muscle. In Maughan RJ, Shireffs SM, editors. Biochemistry of Exercise IX. Champaign: Human Kinetics; 1996. pp. 297–307.Google Scholar
  40. 40.
    Lexell J, Sjöström M, Nordlund AS, et al. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve. 1992;15(3):404–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Oertel G. Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence. An autopsy study. J Neurol Sci. 1988;88(1–3):303–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Pilegaard H, Terzis G, Halestrap A, et al. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am J Physiol. 1999;276(5 Pt 1):843–848.Google Scholar
  43. 43.
    Juel C. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle. Eur J Appl Physiol. 2001;86(1):12–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Colliander EB, Dudley GA, Tesch PA. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur J Appl Physiol Occup Physiol. 1988;58(1–2):81–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamada T, Sale DG, MacDougall JD, et al. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand. 2003;178(2):165–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876–84.PubMedGoogle Scholar
  47. 47.
    Kappenstein J, Ferrauti A, Runkel B, et al. Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults. Eur J Appl Physiol. 2013;113(11):2769–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor DJ, Kemp GJ, Thompson CH, et al. Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem. 1997;174(1–2):321–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Astrand P.O., Rodahl K. Textbook of Work Physiology. 3rd ed. New York: McGraw-Hill; 1986.Google Scholar
  50. 50.
    Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;34(3):165–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Armon Y, Cooper DM, Flores R, et al. Oxygen uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol. 1991;70(2):841–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Armon Y, Cooper DM, Zanconato S. Maturation of ventilatory responses to 1-minute exercise. Pediatr Res. 1991;29(4 Pt 1):362–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Williams CA, Carter H, Jones AM, et al. Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol. 2001;90(5):1700–6.PubMedGoogle Scholar
  54. 54.
    Freedson PS, Gilliam TB, Sady SP, et al. Transient VO2 characteristics in children at the onset of steady-rate exercise. Res Q Exerc Sport. 1981;52(2):167–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Zanconato S, Cooper DM, Armon Y. Oxygen cost and oxygen uptake dynamics and recovery with 1 min of exercise in children and adults. J Appl Physiol. 1991;71(3):993–8.PubMedGoogle Scholar
  56. 56.
    Cumming GR. Recirculation times in exercising children. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(6):1005–8.PubMedGoogle Scholar
  57. 57.
    Nieman DC. Upper respiratory tract infections and exercise. Thorax. 1995;50(12):1229–31.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):1103–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Caine D, Lewis R, O’Connor P, et al. Does gymnastics training inhibit growth of females? Clin J Sport Med. 2001;11(4):260–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Theintz GE, Howald H, Weiss U, et al. Evidence for a reduction of growth potential in adolescent female gymnasts. J Pediatr. 1993;122(2):306–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Caine D. Growth plate injury and bone growth: an update. Pediatr Exerc Sci. 1990;2(3):209–29.Google Scholar
  62. 62.
    Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):148–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Ratel S. High-intensity and resistance training and elite young athletes. In Armstrong N, McManus AM, editors. The elite young athlete. Basel: Karger; 2011. pp. 84–96.Google Scholar
  64. 64.
    Falk B, Eliakim A. Resistance training, skeletal muscle and growth. Pediatr Endocrinol Rev. 2003;1(2):120–7.PubMedGoogle Scholar
  65. 65.
    Behringer M, Vom Heede A, Matthews M, et al. Effects of strength training on motor performance skills in children and adolescents: a meta-analysis. Pediatr Exerc Sci. 2011;23(2):186–206.PubMedGoogle Scholar
  66. 66.
    Brenner JS. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics. 2007;119(6):1242–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Seiler S., Tonnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:32–53.Google Scholar
  68. 68.
    McManus AM, Cheng CH, Leung MP, et al. Improving aerobic power in primary school boys: a comparison of continuous and interval training. Int J Sports Med. 2005;26(9):781–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Siegler J, Gaskill S, Ruby B. Changes evaluated in soccer-specific power endurance either with or without a 10-week, in-season, intermittent, high-intensity training protocol. J Strength Cond Res. 2003;17(2):379–87.PubMedGoogle Scholar
  70. 70.
    Ratel S, Williams CA, Oliver J, et al. Effects of age and mode of exercise on power output profiles during repeated sprints. Eur J Appl Physiol. 2004;92(1–2):204–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Halin R, Germain P, Bercier S, et al. Neuromuscular response of young boys versus men during sustained maximal contraction. Med Sci Sports Exerc. 2003;35(6):1042–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Lazaar, N., Ratel, S., Rudolf, P., et al. Performance during intermittent running exercise: effects of age and recovery duration. Biom Hum Anthropol. 2002;20:29–34.Google Scholar
  73. 73.
    Dupont G, Berthoin S, Gerbeaux M. Performance during anaerobic intermittent exercise: comparison between children and mature subjects. Sci Sports. 2000;15:147–53.CrossRefGoogle Scholar
  74. 74.
    Soares JMC, Mota P, Duarte JA, Appell HJ. Children are less susceptible to exercise-induced muscle damage than adults: a preliminary investigation. Pediatr Exerc Sci. 1996;8(4):361–7.Google Scholar
  75. 75.
    Gaul CA, Docherty D, Cicchini R. Differences in anaerobic performance between boys and men. Int J Sports Med. 1995;16(7):451–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Forschungszentrum für den Schulsport und den Sport von Kindern und JugendlichenKarlsruhe Institut für TechnologieKarlsruheDeutschland
  2. 2.Lehrstuhl für Sportwissenschaft, Institut für SportwissenschaftJulius -Maximilians Universität WürzburgWürzburgDeutschland

Personalised recommendations