Wiener Medizinische Wochenschrift

, Volume 162, Issue 13–14, pp 287–291 | Cite as

Calcium handling and atrial fibrillation

  • Jordi Heijman
  • Niels Voigt
  • Stanley Nattel
  • Dobromir Dobrev
original article

Summary

Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia in the clinical setting. It is associated with substantial cardiovascular morbidity and mortality. Recent research has indicated that abnormal Ca2+ handling plays a critical role in the induction and maintenance of AF, contributing to ectopic activity, AF-maintaining reentry circuits and related prothrombotic atrial hypocontractility. The AF-specific Ca2+-handling abnormalities may constitute viable therapeutic approaches to treat AF. Here, we review the causes, consequences, and therapeutic implications of altered atrial Ca2+ handling for AF pathophysiology.

Keywords

Atrial fibrillation Atrial remodeling Calcium handling Ectopic activity 

Kalzium-Handling und Vorhofflimmern

Zusammenfassung

Vorhofflimmern („atrial fibrillation“, AF) ist die häufigste Herzrhythmusstörung in der klinischen Praxis und ist assoziiert mit einer deutlich erhöhten kardiovaskulären Morbidität und Mortalität. Neuere Studien haben gezeigt, dass Störungen der intrazellulären Kalzium-Homöostase („Kalzium-Handling“) eine entscheidende Rolle bei der Entstehung und Aufrechterhaltung von AF spielen. Gestörtes Kalzium-Handling kann zu ektoper Aktivität, zur Ausbildung von kreisenden Erregungen („Reentry“) und zur atrialen Hypokontraktilität beitragen. Die Aufklärung vorhofspezifischer Veränderungen des Kalzium-Handlings bei AF könnte zur Entwicklung neuer therapeutischer Optionen für die Behandlung des AF führen. Diese Übersichtsarbeit fasst Ursachen und Folgen des veränderten Kalzium-Handlings bei AF zusammen und zeigt darauf beruhende neue therapeutische Ansatzpunkte auf.

Schlüsselwörter

Vorhofflimmern Atriales Remodeling Kalzium-Handling Ektope Aktivität 

References

  1. 1.
    Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Wakili R, Voigt N, Kaab S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121:2955–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Dobrev D. Electrical remodeling in atrial fibrillation. Herz. 2006;31:108–12 (quiz 142-103).PubMedCrossRefGoogle Scholar
  4. 4.
    Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110:1358–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Dobrev D. Atrial Ca2+ signaling in atrial fibrillation as an antiarrhythmic drug target. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:195–206.PubMedCrossRefGoogle Scholar
  6. 6.
    Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Dobrev D, Voigt N, Wehrens XH. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res. 2011;89:734–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Walden AP, Dibb KM, Trafford AW. Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol. 2009;46:463–73.PubMedCrossRefGoogle Scholar
  10. 10.
    El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006;114:670–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111:2025–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Dobrev D, Nattel S. Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol. 2008;52:293–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Lenaerts I, Bito V, Heinzel FR, et al. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res. 2009;105:876–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Grandi E, Pandit SV, Voigt N, et al. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res. 2011;109:1055–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+-leak and increased Na+-Ca2+-exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125(17):2059–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Qi XY, Yeh YH, Xiao L, et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res. 2008;103:845–854.PubMedCrossRefGoogle Scholar
  17. 17.
    Christ T, Boknik P, Wohrl S, et al. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004;110:2651–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res. 2011;89:710–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current IK, ACh is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112:3697–3706.PubMedCrossRefGoogle Scholar
  20. 20.
    Makary S, Voigt N, Maguy A, et al. Differential protein kinase C isoform regulation and increased constitutive activity of acetylcholine-regulated potassium channels in atrial remodeling. Circ Res. 2011;109:1031–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Pandit SV, Berenfeld O, Anumonwo JM, et al. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J. 2005;88:3806–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation. 2001;103:691–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1:62–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011;89:744–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang YJ, Sung RJ, Lin MW, et al. Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol. 2006;213:175–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375:1212–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Hwang HS, Hasdemir C, Laver D, et al. Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2011;4:128–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou Q, Xiao J, Jiang D, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med. 2011;17:1003–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res. 2012;110:465–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Jordi Heijman
    • 1
  • Niels Voigt
    • 1
  • Stanley Nattel
    • 2
  • Dobromir Dobrev
    • 1
  1. 1.Division of Experimental Cardiology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  2. 2.Department of MedicineMontreal Heart Institute and Université de MontréalMontrealCanada

Personalised recommendations