Calcium handling and atrial fibrillation

Kalzium-Handling und Vorhofflimmern

  • 890 Accesses

  • 20 Citations


Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia in the clinical setting. It is associated with substantial cardiovascular morbidity and mortality. Recent research has indicated that abnormal Ca2+ handling plays a critical role in the induction and maintenance of AF, contributing to ectopic activity, AF-maintaining reentry circuits and related prothrombotic atrial hypocontractility. The AF-specific Ca2+-handling abnormalities may constitute viable therapeutic approaches to treat AF. Here, we review the causes, consequences, and therapeutic implications of altered atrial Ca2+ handling for AF pathophysiology.


Vorhofflimmern („atrial fibrillation“, AF) ist die häufigste Herzrhythmusstörung in der klinischen Praxis und ist assoziiert mit einer deutlich erhöhten kardiovaskulären Morbidität und Mortalität. Neuere Studien haben gezeigt, dass Störungen der intrazellulären Kalzium-Homöostase („Kalzium-Handling“) eine entscheidende Rolle bei der Entstehung und Aufrechterhaltung von AF spielen. Gestörtes Kalzium-Handling kann zu ektoper Aktivität, zur Ausbildung von kreisenden Erregungen („Reentry“) und zur atrialen Hypokontraktilität beitragen. Die Aufklärung vorhofspezifischer Veränderungen des Kalzium-Handlings bei AF könnte zur Entwicklung neuer therapeutischer Optionen für die Behandlung des AF führen. Diese Übersichtsarbeit fasst Ursachen und Folgen des veränderten Kalzium-Handlings bei AF zusammen und zeigt darauf beruhende neue therapeutische Ansatzpunkte auf.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1


  1. 1.

    Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.

  2. 2.

    Wakili R, Voigt N, Kaab S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121:2955–68.

  3. 3.

    Dobrev D. Electrical remodeling in atrial fibrillation. Herz. 2006;31:108–12 (quiz 142-103).

  4. 4.

    Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110:1358–63.

  5. 5.

    Dobrev D. Atrial Ca2+ signaling in atrial fibrillation as an antiarrhythmic drug target. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:195–206.

  6. 6.

    Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134–44.

  7. 7.

    Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

  8. 8.

    Dobrev D, Voigt N, Wehrens XH. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res. 2011;89:734–43.

  9. 9.

    Walden AP, Dibb KM, Trafford AW. Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol. 2009;46:463–73.

  10. 10.

    El-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006;114:670–80.

  11. 11.

    Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111:2025–32.

  12. 12.

    Dobrev D, Nattel S. Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol. 2008;52:293–9.

  13. 13.

    Lenaerts I, Bito V, Heinzel FR, et al. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res. 2009;105:876–85.

  14. 14.

    Grandi E, Pandit SV, Voigt N, et al. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res. 2011;109:1055–66.

  15. 15.

    Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+-leak and increased Na+-Ca2+-exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125(17):2059–70.

  16. 16.

    Qi XY, Yeh YH, Xiao L, et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res. 2008;103:845–854.

  17. 17.

    Christ T, Boknik P, Wohrl S, et al. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation. 2004;110:2651–7.

  18. 18.

    Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res. 2011;89:710–21.

  19. 19.

    Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current IK, ACh is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112:3697–3706.

  20. 20.

    Makary S, Voigt N, Maguy A, et al. Differential protein kinase C isoform regulation and increased constitutive activity of acetylcholine-regulated potassium channels in atrial remodeling. Circ Res. 2011;109:1031–43.

  21. 21.

    Pandit SV, Berenfeld O, Anumonwo JM, et al. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J. 2005;88:3806–21.

  22. 22.

    Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–4.

  23. 23.

    Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation. 2001;103:691–8.

  24. 24.

    Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1:62–73.

  25. 25.

    Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011;89:744–53.

  26. 26.

    Wang YJ, Sung RJ, Lin MW, et al. Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol. 2006;213:175–85.

  27. 27.

    Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375:1212–23.

  28. 28.

    Hwang HS, Hasdemir C, Laver D, et al. Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2011;4:128–35.

  29. 29.

    Zhou Q, Xiao J, Jiang D, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med. 2011;17:1003–9.

  30. 30.

    Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res. 2012;110:465–70.

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Correspondence to Univ.-Prof. Dr. med. Dobromir Dobrev MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heijman, J., Voigt, N., Nattel, S. et al. Calcium handling and atrial fibrillation. Wien Med Wochenschr 162, 287–291 (2012) doi:10.1007/s10354-012-0109-9

Download citation


  • Atrial fibrillation
  • Atrial remodeling
  • Calcium handling
  • Ectopic activity


  • Vorhofflimmern
  • Atriales Remodeling
  • Kalzium-Handling
  • Ektope Aktivität