Wiener Medizinische Wochenschrift

, Volume 161, Issue 5–6, pp 109–116 | Cite as

Sex and gender differences in myocardial hypertrophy and heart failure

Main topic

Summary

Cardiovascular disease is the most common cause of death in men and women worldwide. Men develop most, but not all, cardiovascular diseases at an earlier age while the number of affected women significantly increases with higher age. Heart failure (HF) is a common cause of cardiovascular death and carries a poor prognosis in both genders. Risk factors and myocardial adaptations in HF in men and women are different. Female hearts develop a more favorable physiological form of myocardial remodeling than male hearts. This may be related to sex hormones, estrogens and testosterone. A clinical study for gender differences in human aortic stenosis supports the hypotheses. HF management differs between both sexes, with underdiagnosis and undertreatment and less use of invasive therapies in women. Nevertheless, women frequently have better outcomes than men. Gender research will contribute directly to patient-oriented benefit by suggesting clinical protocols.

Keywords

Aortic stenosis Dilated cardiomyopathy Estradiol Extracellular matrix Heart failure 

Abbreviations:

AR

androgen receptor

AS

aortic stenosis

AVR

aortic valve replacement

DCM

dilated cardiomyopathy

E2

estradiol

ECM

extracellular matrix

ER

estrogen receptor

HF

heart failure

LVH

left ventricular hypertrophy

MH

myocardial hypertrophy

MMP

matrix metalloproteinases

Geschlechterunterschiede in Myokardhypertrophie und Herzinsuffizienz

Zusammenfassung

Kardiovaskuläre Erkrankungen sind die häufigste Todesursache bei Männern und Frauen. Männer entwickeln kardiovaskuläre Erkrankungen häufiger in einem jüngeren, Frauen in einem späten Alter. Herzinsuffizienz (HF) führt zu einer signifikanten Verschlechterung der Lebenserwartung und ist für beide Geschlechter ungünstig. Risikofaktoren und myokardiale Anpassungsreaktionen bei HF unterscheiden sich bei Männern und Frauen. Frauen entwickeln mehr physiologische Hypertrophie, während Männer eher exzentrische Hypertrophie und Dilatation entwickeln. Das mag mit Sexualhormonen, Östrogenen und Androgenen zusammen hängen. Eine klinische Studie zu Geschlechterunterschieden bei menschlicher Aortenstenose unterstützt unsere Hypothese. Die Behandlung der Herzinsuffizienz unterscheidet sich bei beiden Geschlechtern, Frauen werden weniger intensiv behandelt. Allerdings haben sie dennoch meistens einen günstigeren Verlauf. Genderspezifische Medizin wird direkt zu einer Verbesserung des Managements bei Frauen und Männern beitragen.

Schlüsselwörter

Aortenstenose Dilatative Kardiomyopathie Estradiol Extrazelluläre Matrix Herzinsuffizienz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364(9438): 937–952, 2004PubMedCrossRefGoogle Scholar
  2. Regitz-Zagrosek V, Lehmkuhl E, Hocher B, et al. Gender as a risk factor in young, not in old, women undergoing coronary artery bypass grafting. J Am Coll Cardiol, 44: 2413–2414, 2004PubMedCrossRefGoogle Scholar
  3. Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov, 5: 425–438, 2006PubMedCrossRefGoogle Scholar
  4. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of HF with preserved ejection fraction. N Engl J Med, 355: 251–259, 2006PubMedCrossRefGoogle Scholar
  5. Ho KKL, Anderson KM, Kannel WB, et al. Survival after the onset of congestive HF in Framingham Heart Study subjects. Circulation, 88: 107–115, 1993PubMedGoogle Scholar
  6. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive HF. JAMA, 275: 1557–1562, 1996PubMedCrossRefGoogle Scholar
  7. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of HF. N Engl J Med, 347: 305–313, 2002PubMedCrossRefGoogle Scholar
  8. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation, 109: 2191–2196, 2004PubMedCrossRefGoogle Scholar
  9. Taegtmeyer H. Cardiac metabolism as a target for the treatment of HF. Circulation, 110: 894–896, 2004PubMedCrossRefGoogle Scholar
  10. Carroll JD, Carroll EP, Feldman T, et al. Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, 86: 1099–1107, 1992PubMedGoogle Scholar
  11. Liao Y, Cooper RS, Mensah GA, et al. Left ventricular hypertrophy has a greater impact on survival in women than in men. Circulation, 92: 805–810, 1995PubMedGoogle Scholar
  12. Cleland JG, Swedberg K, Follath F, et al. The EuroHF survey programme – a survey on the quality of care among patients with HF in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J, 24: 442–463, 2003PubMedCrossRefGoogle Scholar
  13. Mahmoodzadeh S, Eder S, Nordmeyer J, et al. Estrogen receptor alpha up-regulation and redistribution in human HF. FASEB J, 20: 926–934, 2006PubMedCrossRefGoogle Scholar
  14. Regitz-Zagrosek V, Brokat S, Tschope C. Role of Gender in HF with normal left ventricular ejection fraction. Prog Cardiovasc Dis, 49: 241–251, 2007PubMedCrossRefGoogle Scholar
  15. Regitz-Zagrosek V, Lehmkuhl E, Lehmkuhl HB, et al. Gender aspects in HF. Pathophysiology and medical therapy. Arch Mal Coeur Vaiss, 97: 899–908, 2004PubMedGoogle Scholar
  16. Heo S, Moser DK, Widener J. Gender differences in the effects of physical and emotional symptoms on health-related quality of life in patients with HF. Eur J Cardiovasc Nurs, 6: 146–152, 2007PubMedCrossRefGoogle Scholar
  17. Fielitz J, Hein S, Mitrovic V, et al. Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. J Am Coll Cardiol, 37: 1443–1449, 2001PubMedCrossRefGoogle Scholar
  18. Petrov G, Regitz-Zagrosek V, Lehmkuhl EB, et al. Abstract 3549: Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation, 120(18_MeetingAbstracts): S821-c-2, 2009Google Scholar
  19. Du XJ. Gender modulates cardiac phenotype development in genetically modified mice. Cardiovasc Res, 63: 510–519, 2004PubMedCrossRefGoogle Scholar
  20. Ladd AN, Taffet G, Hartley C, et al. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol, 25: 6267–6278, 2005PubMedCrossRefGoogle Scholar
  21. Hsieh YC, Choudhry MA, Yu HP, et al. Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J, 20: 1109–1117, 2006PubMedCrossRefGoogle Scholar
  22. Djouadi F, Weinheimer CJ, Saffitz JE, et al. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J Clin Invest, 102: 1083–1091, 1998PubMedCrossRefGoogle Scholar
  23. Nohammer C, Brunner F, Wolkart G, et al. Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. Lab Invest, 83: 259–269, 2003PubMedGoogle Scholar
  24. Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation, 109: 2054–2057, 2004PubMedCrossRefGoogle Scholar
  25. Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation, 89: 1943–1950, 1994PubMedGoogle Scholar
  26. Venkov CD, Rankin AB, Vaughan DE. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation, 94: 727–733, 1996PubMedGoogle Scholar
  27. Nordmeyer J, Eder S, Mahmoodzadeh S, et al. Upregulation of myocardial estrogen receptors in human aortic stenosis. Circulation, 110: 3270–3275, 2004PubMedCrossRefGoogle Scholar
  28. Grohe C, Kahlert S, Lobbert K, et al. Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett, 416: 107–112, 1997PubMedCrossRefGoogle Scholar
  29. Ropero AB, Eghbali M, Minosyan TY, et al. Heart estrogen receptor alpha: Distinct membrane and nuclear distribution patterns and regulation by estrogen. J Mol Cell Cardiol, 41: 496–510, 2006PubMedCrossRefGoogle Scholar
  30. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med, 340: 1801–1811, 1999PubMedCrossRefGoogle Scholar
  31. Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation, 105: 1368–1373, 2002PubMedCrossRefGoogle Scholar
  32. Kim JK, Pedram A, Razandi M, et al. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem, 281: 6760–6767, 2006PubMedCrossRefGoogle Scholar
  33. Baltatu O, Cayla C, Iliescu R, et al. Abolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats. Hypertension, 41(3 Pt 2): 830–833, 2003PubMedCrossRefGoogle Scholar
  34. Cavasin MA, Tao ZY, Yu AL, et al. Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am J Physiol Heart Circ Physiol, 290: H2043–H2050, 2006PubMedCrossRefGoogle Scholar
  35. Planavila A, Laguna JC, Vazquez-Carrera M. Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem, 280: 17464–17471, 2005PubMedCrossRefGoogle Scholar
  36. Ikeda Y, Aihara K, Sato T, et al. Androgen receptor gene knockout male mice exhibit impaired cardiac growth and exacerbation of angiotensin II-induced cardiac fibrosis. J Biol Chem, 280: 29661–29666, 2005PubMedCrossRefGoogle Scholar
  37. Ciana P, Raviscioni M, Mussi P, et al. In vivo imaging of transcriptionally active estrogen receptors. Nat Med, 9: 82–86, 2003PubMedCrossRefGoogle Scholar
  38. Witt H, Schubert C, Jaekel J, et al. Sex-specific pathways in early cardiac response to pressure overload in mice. J Mol Med, 86: 1013–1024, 2008PubMedCrossRefGoogle Scholar
  39. Mahmoodzadeh S, Dworatzek E, Fritschka S, et al. 17{beta}-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovasc Res, 85: 719–728, 2009PubMedCrossRefGoogle Scholar
  40. Fliegner D, Schubert C, Penkalla A, et al. Female sex and estrogen receptor beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Physiol, 298: R1597–1606, 2010CrossRefGoogle Scholar
  41. Reis SE, Holubkov R, Young JB, et al. Estrogen is associated with improved survival in aging women with congestive HF: analysis of the vesnarinone studies. J Am Coll Cardiol, 36: 529–533, 2000PubMedCrossRefGoogle Scholar
  42. Rossouw JE, Prentice RL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA, 297: 1465–1477, 2007PubMedCrossRefGoogle Scholar
  43. Regitz-Zagrosek V, Wintermantel TM, Schubert C. Estrogens and SERMs in coronary heart disease. Curr Opin Pharmacol, 7: 130–139, 2007PubMedCrossRefGoogle Scholar
  44. Agvall B, Dahlstrom U. Patients in primary health care diagnosed and treated as HF, with special reference to gender differences. Scand J Prim Health Care, 19: 14–19, 2001PubMedCrossRefGoogle Scholar
  45. Lenzen MJ, Rosengren A, Scholte op Reimer WJ, et al. Management of patients with HF in clinical practice: differences between men and women. Heart, 94: e10, 2008PubMedCrossRefGoogle Scholar
  46. O'Meara E, Clayton T, McEntegart MB, et al. Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with HF: results of the Candesartan in HF: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation, 115: 3111–3120, 2007PubMedCrossRefGoogle Scholar
  47. Baumhakel M, Muller U, Bohm M. Influence of gender of physicians and patients on guideline-recommended treatment of chronic HF in a cross-sectional study. Eur J Heart Fail, 11: 299–303, 2009PubMedCrossRefGoogle Scholar
  48. Alaeddini J, Wood MA, Amin MS, et al. Gender disparity in the use of cardiac resynchronization therapy in the United States. Pacing Clin Electrophysiol, 31(4): 468–472, 2008PubMedCrossRefGoogle Scholar
  49. Curtis LH, Al-Khatib SM, Shea AM, et al. Sex differences in the use of implantable cardioverter-defibrillators for primary and secondary prevention of sudden cardiac death. JAMA, 298: 1517–1524, 2007PubMedCrossRefGoogle Scholar
  50. Russo AM, Poole JE, Mark DB, et al. Primary prevention with defibrillator therapy in women: results from the Sudden Cardiac Death in HF Trial. J Cardiovasc Electrophysiol, 19: 720–724, 2008PubMedCrossRefGoogle Scholar
  51. Ghali JK, Krause-Steinrauf HJ, Adams KF, et al. Gender differences in advanced HF: insights from the BEST study. J Am Coll Cardiol, 42: 2128–2134, 2003PubMedCrossRefGoogle Scholar
  52. Simon T, Mary-Krause M, Funck-Brentano C, et al. Sex differences in the prognosis of congestive HF: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation, 103: 375–380, 2001PubMedGoogle Scholar
  53. De Maria R, Gavazzi A, Recalcati F, et al. Comparison of clinical findings in idiopathic dilated cardiomyopathy in women versus men. Am J Cardiol, 72: 580–585, 1993PubMedCrossRefGoogle Scholar
  54. Regitz-Zagrosek V, Petrov G, Lehmkuhl E, et al. Heart transplantation in women with dilated cardiomyopathy. Transplantation, 89: 236–244, 2010PubMedCrossRefGoogle Scholar
  55. Reginster JY. Miscellaneous and experimental agents. Am J Med Sci, 313: 33–40, 1997PubMedCrossRefGoogle Scholar
  56. Douglas PS, Katz SE, Weinberg EO, et al. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol, 32: 1118–1125, 1998PubMedCrossRefGoogle Scholar
  57. Weinberg EO, Mirotsou M, Gannon J, et al. Sex dependence and temporal dependence of the left ventricular genomic response to pressure overload. Physiol Genomics, 12: 113–127, 2003PubMedGoogle Scholar
  58. Xin HB, Senbonmatsu T, Cheng DS, et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature, 416(6878): 334–338, 2002PubMedCrossRefGoogle Scholar
  59. O'Lone R, Knorr K, Jaffe IZ, et al. Estrogen receptors alpha and beta mediate distinct pathways of vascular gene expression, including genes involved in mitochondrial electron transport and generation of reactive oxygen species. Mol Endocrinol, 21: 1281–1296, 2007PubMedCrossRefGoogle Scholar
  60. Camper-Kirby D, Welch S, Walker A, et al. Myocardial Akt activation and gender: increased nuclear activity in females versus males. Circ Res, 88: 1020–1027, 2001PubMedCrossRefGoogle Scholar
  61. Loyer X, Damy T, Chvojkova Z, et al. 17beta-estradiol regulates constitutive nitric oxide synthase expression differentially in the myocardium in response to pressure overload. Endocrinology, 148: 4579–4584, 2007PubMedCrossRefGoogle Scholar
  62. Loyer X, Oliviero P, Damy T, et al. Effects of sex differences on constitutive nitric oxide synthase expression and activity in response to pressure overload in rats. Am J Physiol Heart Circ Physiol, 293: H2650–H2658, 2007PubMedCrossRefGoogle Scholar
  63. Nuedling S, Karas RH, Mendelsohn ME, et al. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett, 502: 103–108, 2001PubMedCrossRefGoogle Scholar
  64. Lu Q, Pallas DC, Surks HK, et al. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad Sci USA, 101: 17126–17131, 2004PubMedCrossRefGoogle Scholar
  65. Dash R, Frank KF, Carr AN, et al. Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol, 33: 1345–1353, 2001PubMedCrossRefGoogle Scholar
  66. Golden KL, Marsh JD, Jiang Y. Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Horm Metab Res, 36: 197–202, 2004PubMedCrossRefGoogle Scholar
  67. Xu Y, Arenas IA, Armstrong SJ, et al. Estrogen modulation of left ventricular remodeling in the aged heart. Cardiovasc Res, 57: 388–394, 2003PubMedCrossRefGoogle Scholar
  68. Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol, 26: 1068–1079, 1995PubMedCrossRefGoogle Scholar
  69. Skavdahl M, Steenbergen C, Clark J, et al. Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol, 288: H469–H476, 2005PubMedCrossRefGoogle Scholar
  70. Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res, 16: 995–1004, 2006PubMedCrossRefGoogle Scholar
  71. Isensee J, Witt H, Pregla R, et al. Sexually dimorphic gene expression in the heart of mice and men. J Mol Med, 86: 61–74, 2008PubMedCrossRefGoogle Scholar
  72. Diedrich M, Tadic J, Mao L, et al. Heart protein expression related to age and sex in mice and humans. Int J Mol Med, 20: 865–874, 2007PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Gender in Medicine (GiM) and Center for Cardiovascular Research (CCR)Charité University MedicineBerlinGermany
  2. 2.Center for Gender in Medicine (GiM)Charité University MedicineBerlinGermany
  3. 3.German Heart Institute (DHZB)BerlinGermany

Personalised recommendations