Advertisement

Wiener Medizinische Wochenschrift

, Volume 161, Issue 23–24, pp 565–570 | Cite as

The role of osteoprotegerin (OPG) receptor activator for nuclear factor kappaB ligand (RANKL) in cardiovascular pathology – a review

  • Daniela-Eugenia Malliga
  • Doris Wagner
  • Astrid Fahrleitner-PammerEmail author
Main topic

Summary

Initially described as key regulators in metabolic bone disease osteoprotegerin (OPG), receptor activator of nuclear factor kappa B (RANK) and RANK ligand (RANKL) have also been discriminated as regulators in immunologic function. Cardiovascular diseases (CVD) develop over many years in life and are often triggered by inflammatory processes within the vessel wall that lead to vascular remodeling. Recently some study groups have described OPG as a prognostic parameter for mortality and morbidity in cardiovascular patients.

Keywords

Coronary heart disease Heart failure Atherosclerosis Osteoprotegerin RANKL 

Osteoprotegerin (OPG) und Receptor Activator for Nuclear Factor kappaB Ligand (RANKL) als Risikofaktoren für Entstehung und Schweregrad einer Koronaren Herzerkrankung – ein Review

Zusammenfassung

Osteoprotegerin (OPG), Receptor activator of nuclear factor kappaB (RANK) und dessen Ligand (RANKL) werden nicht nur als Schlüsselregulatoren des Knochenstoffwechsels beschrieben, sondern auch als wichtige Regulatoren immunologischer Funktionen erkannt. Eine koronare Herzerkrankung (KHK) entwickelt sich über Jahre und ist sehr oft die Folge entzündlicher Prozesse, die eine Schädigung des Endothels verursachen. Die rezente Literatur beschreibt OPG bei Patienten mit einer KHK als wichtigen Prädiktor von Mortalität und Morbidität.

Schlüsselwörter

Koronare Herzerkrankung Herzinsuffizienz Atherosklerose OPG/RANKL/RANK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein Involved in the regulation of bone density. Cell, 89: 309–319, 1997PubMedCrossRefGoogle Scholar
  2. Tsuda E, Goto M, Mochizuki S-I, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun, 234: 137–142, 1997PubMedCrossRefGoogle Scholar
  3. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 139: 1329–1337, 1998aCrossRefGoogle Scholar
  4. Kwon BS, Wang S, Udagawa N, et al. TR1, a new member of the tumor necrosis factor receptor family, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J, 12: 845–854, 1998PubMedGoogle Scholar
  5. Tan KB, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and no-hematopoietic cells. Gene, 204: 35–46, 1997PubMedCrossRefGoogle Scholar
  6. Yun TJ, Chaudhary PM, Shu GL, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol, 161: 6113–6121, 1998PubMedGoogle Scholar
  7. Yun TJ, Tallquist MD, Aicher A, et al. Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol, 166: 1482–1491, 2001PubMedGoogle Scholar
  8. American Society for Bone and Mineral Research President's Committee on Nomenclature. Proposed standard nomenclature for new tumor necrosis factor members involved in the regulation of bone resorption. The American Society for Bone and Mineral Research President's Committee on Nomenclature. Bone, 27: 761–764, 2000CrossRefGoogle Scholar
  9. Hilton MJ, Gutierrez L, Zhang L, et al. An integrated physical map of 8q22-Q24: use in positional cloning and deletion analysis of Langer-Giedion syndrome. Genomics, 71: 192–199, 2001PubMedCrossRefGoogle Scholar
  10. Morinaga T, Nakagawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem, 254: 685–691, 1998PubMedCrossRefGoogle Scholar
  11. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci, 95: 3597–3602, 1998bCrossRefGoogle Scholar
  12. Merewether LA, Le J, Jones MD, et al. Development of disulfide peptide mapping and determination of disulfide structure of recombinant human osteoprotegerin chimera produced in Escherichia coli. Arch Biochem Biophys, 375: 101–110, 2000PubMedCrossRefGoogle Scholar
  13. Tomoyasu A, Goto M, Fujise N, et al. Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor. Biochem Biophys Res Commun, 245: 382–387, 1998PubMedCrossRefGoogle Scholar
  14. Yamaguchi K, Kinosaki M, Goto M, et al. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem, 273: 5117–5123, 1998PubMedCrossRefGoogle Scholar
  15. Leibbrandt A, Penninger JM. RANK/RANKL: Regulators of immune responses and bone physiology. Ann NY Acad Sci, 1143: 123–150, 2008PubMedCrossRefGoogle Scholar
  16. Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene, 17: 3261–3270, 1998PubMedCrossRefGoogle Scholar
  17. Lacey DL, Timms E, Tan H-L, et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93: 165–176, 1998PubMedCrossRefGoogle Scholar
  18. Emery JG, McDonnell P, Brigham Burke M, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem, 273: 14363–14367, 1998PubMedCrossRefGoogle Scholar
  19. Wagner D, Fahrleitner-Pammer A. Levels of osteoprotegerin (OPG) and receptor activator for factor kappa ligand (RANKL) in serum: are they of any help. Wien Med Wochenschr, 160: 452–457, 2010PubMedCrossRefGoogle Scholar
  20. Fahrleitner-Pammer A, Herberth J, Browning SR, et al. Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res, 23: 1850–1858, 2008PubMedCrossRefGoogle Scholar
  21. Fuller K, Wong B, Fox S, et al. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med, 188: 997–1001, 1998PubMedCrossRefGoogle Scholar
  22. Quinn JMW, Elliott J, Gillespie MT, et al. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 139: 4424–4427, 1998PubMedCrossRefGoogle Scholar
  23. Udagawa N, Takahashi N, Jimi E, et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-κb ligand. Bone, 25: 517–523, 1999PubMedCrossRefGoogle Scholar
  24. Xu J, Tan JW, Huang L, et al. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-κb ligand. J Bone Miner Res, 15: 2178–2186, 2000PubMedCrossRefGoogle Scholar
  25. Dobnig H, Hofbauer LC, Viereck V, et al. Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in biphosphanate-treated osteoporotic patients. Osteoporos Int, 17: 693–703, 2006PubMedCrossRefGoogle Scholar
  26. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 12: 1260–1268, 1998PubMedCrossRefGoogle Scholar
  27. Venuraju SM, Yerramasu A, Corder R, et al. Osteprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol, 55: 2049–2061, 2010PubMedCrossRefGoogle Scholar
  28. Price P, June HH, Buckley JR, et al. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin B. Arterioscler Thromb vasc Biol, 21: 1610–1616, 2001PubMedCrossRefGoogle Scholar
  29. Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun, 247: 610–615, 1998PubMedCrossRefGoogle Scholar
  30. Morony S, Tintut Y, Zhang Z, et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(–/–) mice. Circulation, 117: 411–420, 2008PubMedCrossRefGoogle Scholar
  31. O'Sullivan EP, Ashley DT, Davenport C, et al. Osteoprotegerin and biomarkers of vascular inflammation in type 2 diabetes. Diabetes Metab Res Rev, 26: 496–502, 2010PubMedCrossRefGoogle Scholar
  32. Zagura M, Serg M, Kampus P, et al. Association of osteoprotegerin with aortic stiffness in patients with symptomatic peripheral artery disease and in healthy subjects. Am J Hypertens, 23: 586–591, 2010PubMedCrossRefGoogle Scholar
  33. Crisafulli A, Micari A, Altavilla D, et al. Serum level of osteoprotegerin and RANKL in patients with ST elevation acute myocardial infarction. Clinical Science, 109: 389–395, 2005PubMedCrossRefGoogle Scholar
  34. Osako MK, Nakagami H, Koibuchi N, et al. Estrogen inhibits vascular calcification via vascular RANKL systems. Common mechanism of osteoporosis and vascular calcification. Circ Res, 107: 466–475, 2010PubMedCrossRefGoogle Scholar
  35. Yano K, Tsuda E, Washida N, et al. Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: increased serum concentration in postmenopausal women with osteoporosis. J Bone Miner Res, 14: 518–527, 1999PubMedCrossRefGoogle Scholar
  36. Kiechl S, Schett G, Wenning G, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation, 109: 2175–2180, 2004PubMedCrossRefGoogle Scholar
  37. Clancy P, Oliver L, Jayalath R, et al. Assessment of a serum assay for quantification of abdominal aortic calcification. Arterioscler Thromb Vasc Biol, 26: 2574–2576, 2006PubMedCrossRefGoogle Scholar
  38. Gogo P, SSchneider DJ, Terrien EF, et al. Osteoprotegerin is not associated with angiographic coronary calcification. J Thromb Thrombolysis, 22: 177–183, 2006PubMedCrossRefGoogle Scholar
  39. Sandberg WJ, Yndestad A, Oie E, et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome. Possible role in plaque destabilization. Arterioscler Thromb Vasc Biol, 26: 857–863, 2006PubMedCrossRefGoogle Scholar
  40. Shin JY, Shin YG, Chung CH. Elevated serum osteoprotegerin levels are associated with vascular endothelial dysfunction in type 2 diabetes. Diabetes Care, 29: 1664–1666, 2006PubMedCrossRefGoogle Scholar
  41. Rasmussen LM, Tarnow L, Hansen TK, et al. Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular morbidity in type 1 diabetic patients. Eur J Endocrin, 154: 75–81, 2006CrossRefGoogle Scholar
  42. Xiang G, Xu L, Zhao LS, et al. The relationship between plasma osteoprotegerin and endothelium-dependent arterial dilation in type 2 diabetes. Diabetes, 55: 2126–2131, 2006PubMedCrossRefGoogle Scholar
  43. Anand DV, Lahiri A, Lim E, et al. The Relationship between plasma Osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects. JACC, 47: 1850–1857, 2006PubMedGoogle Scholar
  44. Avignon A, Sultan A, Piot C, et al. Osteoprotegerin: a novel independent marker for silent myocardial ischemic in asymptomatic diabetic patients. Diabetes Care, 30: 2934–2939, 2007PubMedCrossRefGoogle Scholar
  45. Xiang GD, Xu L, Zhao LS. Changes of osteoprotegerin before and after insulin therapy in type 1 diabetic patients. Zhonghua Yi Xue Za Zhi, 87: 1234–1237, 2007PubMedGoogle Scholar
  46. Anand DV, Lim E, Darko D, et al. Determinants of progression of coronary artery calcification in type 2 diabetes. Role of glycemic control and inflammatory/vascular calcification markers. JACC, 50: 2218–2225, 2007PubMedGoogle Scholar
  47. Asanuma Y, Chung CP, Oeser A, et al. Serum osteoprotegerin is increased and independently associated with coronary-artery atherosclerosis in patients with rheumatoid arthritis. Atherosclerosis 195: e135–e141, 2007PubMedCrossRefGoogle Scholar
  48. Abedin M, Omland T, Ueland T, et al. Relation of osteoprotegerin to coronary calcium and aortic plaques (from the DALAS heart study). Am J Cardiol, 99: 513–519, 2007PubMedCrossRefGoogle Scholar
  49. Helske S, Kovanen PT, Lindstedt KA, et al. Increased circulating concentrations and augmented myocardial extraction of osteoprotegerin in heart failure due to left ventricular overload. Eur J Heart Fail, 9: 357–363, 2007PubMedCrossRefGoogle Scholar
  50. Omland T, Drazner MH, Ueland T, et al. Plasma osteoprotegerin levels in the general population: relation to indices of left ventricular structure and function. Hypertension, 49: 1392–1398, 2007PubMedCrossRefGoogle Scholar
  51. Kiechl S, Schett G, Schwaiger J, et al. Soluble Receptor activator of nuclear factor-B ligand and risk for cardiovascular disease. Circulation, 116: 385–391, 2007PubMedCrossRefGoogle Scholar
  52. Kadoglou NP, Gerasimidis T, Golemati S, et al. The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J Vasc Surg, 47: 55–62, 2008PubMedCrossRefGoogle Scholar
  53. Siepi D, Marchesi S, Vaudo G, et al. Preclinical vascular damage in white postmenopausal women: the relevance of osteoprotegerin. Metab Clin Exper, 57: 321–325, 2008CrossRefGoogle Scholar
  54. Golledge J, Leicht AS, Crowther RG, et al. Determinants of endothelial function in a cohort of patients with peripheral artery disease. Cardiology, 111: 51–56, 2008PubMedCrossRefGoogle Scholar
  55. Semb AG, Ueland T, Aukrust P, et al. Osteoprotegerin and soluble receptor activator of nuclear factor- B ligand and risk for coronary events. A nested case-control approach in the prospective EPIC- Norfolk population study 1993–2003. Artherioscler Thromb Vasc Biol, 29: 975–980, 2009CrossRefGoogle Scholar
  56. Kong Y-Y, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397: 315–323, 1999aCrossRefGoogle Scholar
  57. Schoppet M, Sattler AM, Schaefer JR, et al. Increased osteoprotegerin serum levels in men with coronary artery disease. J Clin Endocrinol Metab, 88: 1024–1028, 2003PubMedCrossRefGoogle Scholar
  58. Gannage-Yared MH, Fares F, Semaan M, et al. Circulation Osteoprotegerin is correlated with lipid profile, insulin sensivity, adiponectin and sex steroids in an ageing male population. Clin Endocrin (Oxf), 64: 652–658, 2006CrossRefGoogle Scholar
  59. Jono S, Ikari Y, Shioi A, et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation, 106: 1192–1194, 2002PubMedCrossRefGoogle Scholar
  60. Khosla S, Arrighi HM, Melton LJ 3rd, et al. Correlates of osteoprotegerin levels in women and men. Osteopor Int, 13: 394–399, 2002CrossRefGoogle Scholar
  61. Hofbauer LC, Schoppet M. Osteoprotegerin: a link between osteoporosis and arterial calcification? Lancet, 358: 257–259, 2001cCrossRefGoogle Scholar
  62. Ho KK, Anderson KM, Grossman W, et al. Survival after the onset of congenitiv heart failure in Framingham heart study. Circlation, 88: 107–115, 1993Google Scholar
  63. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res, 91: 988–998, 2002PubMedCrossRefGoogle Scholar
  64. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol, 274: R577–595, 1998PubMedGoogle Scholar
  65. Yndestad A, Damas JK, Geir EH, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res, 54: 175–182, 2002PubMedCrossRefGoogle Scholar
  66. Ueland T, Yndestad A, Oie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation, 111: 2461–2468, 2005PubMedCrossRefGoogle Scholar
  67. Yan ET, Yan RT, Spinale FG, et al. Relationship between plasma levels of matrix metalloproteinase and neurohormonal profile in patients with heart failure. Eur J Heart Fail, 10: 125–128, 2008PubMedCrossRefGoogle Scholar
  68. Liu W, Feng W, Wang F, et al. Osteoprotegerin/RANK/RANKL axis in cardiac remodeling due to immuno-inflammatory myocardial disease. Exp Mol Pathol, 84: 213–217, 2008PubMedCrossRefGoogle Scholar
  69. Omland T, Ueland T, Jansson AM, et al. Circulation osteoprotegerin levels and long-term prognosis in patients with acute coronary syndromes. J Am Coll Cardiol, 51:627–633, 2008PubMedCrossRefGoogle Scholar
  70. Ueland T, Jemtland R, Godang K, et al. Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol, 44: 1970–1976, 2004PubMedCrossRefGoogle Scholar
  71. Roysland R, Masson S, Omland T, et al. Prognostic value of osteoprotegerin in chronic heart failure: the GISSI-HF trial. Am Heart J, 160: 286–293, 2010PubMedCrossRefGoogle Scholar
  72. Lieb W, Gona P, Larson MG, et al. Biomarkers of osteoprotegerin pathway clinical correlates, subclinical disease, incident cardiovascular disease and mortality. Arterioscler Thromb Vasc Biol, 30: 1849–1854, 2010PubMedCrossRefGoogle Scholar
  73. Ueland T, Dahl CP, Kjekshus J, et al. Osteoprotegerin predicts progression of chronic heart failure: results from CORONA. Circ Heart Fail, 4(2): 145–152, 2011PubMedCrossRefGoogle Scholar
  74. Rauner M, Sipos W, Pietschmann P. Osteoimmunology. Int Arch Allergy Immunol, 143: 31–48, 2007PubMedCrossRefGoogle Scholar
  75. Nybo M, Rasmussen LM. The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur J Endocrin, 159: 603–608, 2008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daniela-Eugenia Malliga
    • 1
  • Doris Wagner
    • 2
  • Astrid Fahrleitner-Pammer
    • 3
    Email author
  1. 1.Division of Cardiac Surgery, Department of SurgeryMedical University of GrazGrazAustria
  2. 2.Division of Transplantation, Department of SurgeryMedical University of GrazGrazAustria
  3. 3.Division of Endocrinology and Metabolism, Department of Internal MedicineMedical University of GrazGrazAustria

Personalised recommendations