Wiener Medizinische Wochenschrift

, Volume 160, Issue 23–24, pp 627–636 | Cite as

High Intensity Training (HIT) für die Verbesserung der Ausdauerleistungsfähigkeit von Normalpersonen und im Präventions- & Rehabilitationsbereich

  • Patrick WahlEmail author
  • Matthias Hägele
  • Christoph Zinner
  • Wilhelm Bloch
  • Joachim Mester


Auch wenn intensive Belastungen prinzipiell nicht neu sind, so ist mit dem "High Intensity (Interval) Training" (HIT) in recht kurzer Zeit eine derartige Methode vehement in die internationale wissenschaftliche Diskussion gekommen. Neu ist die große Anzahl an Studien und die immer detaillierter werdenden Erkenntnisse über die physiologischen Reaktionen von HIT (im Vergleich zum klassischen, niedrigintensiven, umfangsorientierten Ausdauertraining). Der vorliegende Artikel fasst den aktuellen Erkenntnisstand zum Thema HIT (Konditionsbereich Ausdauer) im Präventions- und Rehabilitationsbereich zusammen. Diskutiert werden die Anpassungserscheinungen von HIT im Vergleich zum klassischen Ausdauertraining. Außerdem wird versucht, Unterschiede bei Stimuli und physiologischen Wirkungsmechanismen zwischen HIT und HVT zu identifizieren.


Hoch intensives Training Ausdauer Molekular-zelluläre Adaptationen Physiologische Wirkungsmechanismen 

High Intensity Training (HIT) for the improvement of endurance capacity of recreationally active people and in prevention & rehabilitation


Although intensive exercise protocols are commonly used in practical training and scientific studies, there is recently a great scientific discussion about "high intensity (interval) training" (HIT). New are the large amounts of studies and the more detailed knowledge about the physiological responses and adaptations to HIT in comparison to the classic high volume, low intensity endurance training. The present article summarizes the current knowledge about HIT in endurance exercise for clinical applications. In the first part, molecular and cellular adaptations to HIT are discussed in comparison to low intensity high volume training. Furthermore, studies are summarized which compare HIT vs. HVT in the field of prevention and rehabilitation. Terminally the differences in physiological stimuli of both training interventions are considered.


High intensity training Endurance Patients Sedentary Molecular and cellular adaptations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116: 1081–1093, 2007CrossRefPubMedGoogle Scholar
  2. Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med, 116: 682–692, 2004CrossRefPubMedGoogle Scholar
  3. Booth ML, Bauman A, Owen N, et al. Physical activity preferences, preferred sources of assistance, and perceived barriers to increased activity among physically inactive Australians. Prev Med, 26: 131–137, 1997CrossRefPubMedGoogle Scholar
  4. Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med, 3: 346–356, 1986CrossRefPubMedGoogle Scholar
  5. Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev, 36: 58–63, 2008CrossRefPubMedGoogle Scholar
  6. Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586: 151–160, 2008CrossRefPubMedGoogle Scholar
  7. Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 575: 901–911, 2006CrossRefPubMedGoogle Scholar
  8. Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol, 96: 97–105, 2006CrossRefPubMedGoogle Scholar
  9. Gorostiaga EM, Walter CB, Foster C, et al. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol, 63: 101–107, 1991CrossRefPubMedGoogle Scholar
  10. Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc, 39: 665–671, 2007CrossRefPubMedGoogle Scholar
  11. Eddy DO, Sparks KL, Adelizi DA. The effects of continuous and interval training in women and men. Eur J Appl Physiol Occup Physiol, 37: 83–92, 1977CrossRefPubMedGoogle Scholar
  12. Gormley SE, Swain DP, High R, et al. Effect of Intensity of Aerobic Training on VO2max. Med Sci Sports Exerc, 40: 1336–1343, 2008CrossRefPubMedGoogle Scholar
  13. Iaia FM, Hellsten Y, Nielsen JJ, et al. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol, 106: 73–80, 2009CrossRefPubMedGoogle Scholar
  14. McKay BR, Paterson DH, Kowalchuk JM. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol, 107: 128–138, 2009CrossRefPubMedGoogle Scholar
  15. Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc, 28: 1327–1330, 1996PubMedGoogle Scholar
  16. Iaia FM, Thomassen M, Kolding H, et al. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol, 294: R966–R974, 2008PubMedGoogle Scholar
  17. Tjonna AE, Lee SJ, Rognmo O, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation, 118: 346–354, 2008CrossRefPubMedGoogle Scholar
  18. Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol, 292: R1594–R1602, 2007PubMedGoogle Scholar
  19. Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol, 554: 857–870, 2004CrossRefPubMedGoogle Scholar
  20. Terada S, Tabata I, Higuchi M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn J Physiol, 54: 47–52, 2004CrossRefPubMedGoogle Scholar
  21. Terada S, Yokozeki T, Kawanaka K, et al. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol, 90: 2019–2024, 2001PubMedGoogle Scholar
  22. Gibala MJ, McGee SL, Garnham AP, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1{alpha} in human skeletal muscle. J Appl Physiol, 106: 929–934, 2009CrossRefPubMedGoogle Scholar
  23. Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol, 81: 1484–1487, 1996PubMedGoogle Scholar
  24. MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol, 84: 2138–2142, 1998CrossRefPubMedGoogle Scholar
  25. Perry CG, Heigenhauser GJ, Bonen A, et al. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab, 33: 1112–1123, 2008CrossRefPubMedGoogle Scholar
  26. Rodas G, Ventura JL, Cadefau JA, et al. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol, 82: 480–486, 2000CrossRefPubMedGoogle Scholar
  27. Talanian JL, Galloway SD, Heigenhauser GJ, et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol, 102: 1439–1447, 2007CrossRefPubMedGoogle Scholar
  28. Clark SA, Chen ZP, Murphy KT, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab, 286: E737–E743, 2004CrossRefPubMedGoogle Scholar
  29. Pilegaard H, Domino K, Noland T, et al. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol, 276: E255–E261, 1999PubMedGoogle Scholar
  30. Juel C, Klarskov C, Nielsen JJ, et al. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab, 286: E245–E251, 2004CrossRefPubMedGoogle Scholar
  31. Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol, 75: 7–13, 1997CrossRefPubMedGoogle Scholar
  32. Swain DP, Franklin BA. Is there a threshold intensity for aerobic training in cardiac patients? Med Sci Sports Exerc, 34: 1071–1075, 2002CrossRefPubMedGoogle Scholar
  33. Earnest CP. Exercise interval training: an improved stimulus for improving the physiology of pre-diabetes. Med Hypotheses, 71: 752–761, 2008CrossRefPubMedGoogle Scholar
  34. Wen H, Gao Y, An JY. Comparison of high-intensity and anaerobic threshold programs in rehabilitation for patients with moderate to severe chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi, 31: 571–576, 2008PubMedGoogle Scholar
  35. Arnardottir RH, Boman G, Larsson K, et al. Interval training compared with continuous training in patients with COPD. Respir Med, 101: 1196–1204, 2007CrossRefPubMedGoogle Scholar
  36. Vogiatzis I, Nanas S, Roussos C. Interval training as an alternative modality to continuous exercise in patients with COPD. Eur Respir J, 20: 12–19, 2002CrossRefPubMedGoogle Scholar
  37. Harmer AR, Chisholm DJ, McKenna MJ, et al. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care, 31: 2097–2102, 2008CrossRefPubMedGoogle Scholar
  38. Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115: 3086–3094, 2007CrossRefPubMedGoogle Scholar
  39. Rognmo O, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil, 11: 216–222, 2004CrossRefPubMedGoogle Scholar
  40. Amundsen BH, Rognmo O, Hatlen-Rebhan G, et al. High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J, 42: 110–117, 2008CrossRefPubMedGoogle Scholar
  41. Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol, 95: 1080–1084, 2005CrossRefPubMedGoogle Scholar
  42. Tjonna AE, Stolen TO, Bye A, et al. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci (Lond), 116: 317–326, 2009CrossRefGoogle Scholar
  43. Ehsani AA, Martin WH III, Heath GW, et al. Cardiac effects of prolonged and intense exercise training in patients with coronary artery disease. Am J Cardiol, 50: 246–254, 1982CrossRefPubMedGoogle Scholar
  44. Ehsani AA, Biello DR, Schultz J, et al. Improvement of left ventricular contractile function by exercise training in patients with coronary artery disease. Circulation, 74: 350–358, 1986PubMedGoogle Scholar
  45. Jensen BE, Fletcher BJ, Rupp JC, et al. Training level comparison study. Effect of high and low intensity exercise on ventilatory threshold in men with coronary artery disease. J Cardiopulm Rehabil, 16: 227–232, 1996CrossRefPubMedGoogle Scholar
  46. Adachi H, Koike A, Obayashi T, et al. Does appropriate endurance exercise training improve cardiac function in patients with prior myocardial infarction? Eur Heart J, 17: 1511–1521, 1996PubMedGoogle Scholar
  47. Skinner JS. Physical activity and health: What is the importance of training intensity? Dtsch Z Sportmed, 52: 211–214, 2001Google Scholar
  48. O'Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol, 98: 1619–1625, 2005CrossRefPubMedGoogle Scholar
  49. Butcher SJ, Jones RL. The impact of exercise training intensity on change in physiological function in patients with chronic obstructive pulmonary disease. Sports Med, 36: 307–325, 2006CrossRefPubMedGoogle Scholar
  50. Steinacker JM, Liu Y, Stilgenbauer F, et al. Physical exercise in patients with heart failure. Dtsch Z Sportmed, 55: 124–130, 2004Google Scholar
  51. Hagberg JM. Physiologic adaptations to prolonged high-intensity exercise training in patients with coronary artery disease. Med Sci Sports Exerc, 23: 661–667, 1991PubMedGoogle Scholar
  52. Hauer K, Niebauer J, Weiss C, et al. Myocardial ischemia during physical exercise in patients with stable coronary artery disease: predictability and prevention. Int J Cardiol, 75: 179–186, 2000CrossRefPubMedGoogle Scholar
  53. Adams J, Ogola G, Stafford P, et al. High-intensity interval training for intermittent claudication in a vascular rehabilitation program. J Vasc Nurs, 24: 46–49, 2006CrossRefPubMedGoogle Scholar
  54. Meyer K, Samek L, Schwaibold M, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc, 29: 306–312, 1997PubMedGoogle Scholar
  55. Meyer K, Foster C. New approaches to muscle training in cardiovascular patients. Dtsch Z Sportmed, 55: 70–74, 2004Google Scholar
  56. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med, 32: 53–73, 2002CrossRefPubMedGoogle Scholar
  57. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab, 34: 428–432, 2009CrossRefPubMedGoogle Scholar
  58. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol, 97: 1119–1128, 2004CrossRefPubMedGoogle Scholar
  59. Cooper G. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med, 48: 13–23, 1997CrossRefPubMedGoogle Scholar
  60. Fries RB, Wallace WA, Roy S, et al. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat Res, 579: 172–181, 2005PubMedGoogle Scholar
  61. Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery, 90: 262–270, 1981PubMedGoogle Scholar
  62. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med, 54: 17–28, 2003CrossRefPubMedGoogle Scholar
  63. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem, 277: 23111–23115, 2002CrossRefPubMedGoogle Scholar
  64. Lu H, Dalgard CL, Mohyeldin A, et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem, 280: 41928–41939, 2005CrossRefPubMedGoogle Scholar
  65. Hunt TK, Aslam RS, Beckert S, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal, 9: 1115–1124, 2007CrossRefPubMedGoogle Scholar
  66. Constant JS, Feng JJ, Zabel DD, et al. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen, 8: 353–360, 2000CrossRefPubMedGoogle Scholar
  67. Beckert S, Farrahi F, Aslam RS, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen, 14: 321–324, 2006CrossRefPubMedGoogle Scholar
  68. Nareika A, He L, Game BA, et al. Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities. Am J Physiol Endocrinol Metab, 289: E534–E542, 2005CrossRefPubMedGoogle Scholar
  69. Milovanova TN, Bhopale VM, Sorokina EM, et al. Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol, 28: 6248–6261, 2008CrossRefPubMedGoogle Scholar
  70. Brooks GA, Brooks TG, Brooks S. Laktat als metabolisches Signal der Genexpression. Dtsch Z Sportmed, 59: 280–286, 2008Google Scholar
  71. Hashimoto T, Hussien R, Oommen S, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J, 21: 2602–2612, 2007CrossRefPubMedGoogle Scholar
  72. Sonou T, Higuchi M, Terada S. An acute bout of high-intensity intermittent swimming induces glycogen supercompensation in rat skeletal muscle. Eur J Sport Sci, 8: 413–420, 2008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Patrick Wahl
    • 1
    • 2
    • 3
    Email author
  • Matthias Hägele
    • 1
  • Christoph Zinner
    • 1
  • Wilhelm Bloch
    • 2
    • 3
  • Joachim Mester
    • 1
    • 3
  1. 1.Institut für Trainingswissenschaft und SportinformatikDeutsche Sporthochschule KölnKölnGermany
  2. 2.Abteilung für molekulare und zelluläre SportmedizinDeutsche Sporthochschule KölnKölnGermany
  3. 3.Das Deutsche Forschungszentrum für LeistungssportDeutsche Sporthochschule KölnKölnGermany

Personalised recommendations