Advertisement

Wiener Medizinische Wochenschrift

, Volume 160, Issue 17–18, pp 452–457 | Cite as

Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor kappa B ligand (RANKL) in serum: Are they of any help?

  • Doris Wagner
  • Astrid Fahrleitner-Pammer
Themenschwerpunkt

Summary

The coupling of bone formation and resorption is mediated through the OPG/RANK/RANKL system. OPG and RANKL are mainly produced by osteoblasts but also a variety of other tissues. The binding of RANKL to RANK, its natural receptor which is expressed by osteoclasts, accelerates bone resorption. OPG acts as decoy receptor and prevents the interaction of RANKL with RANK and therefore leads to a decrease in activity, survival and proliferation of osteoclasts. Since assays for measurements of serum OPG and RANKL have become commercially available, intense research focused on serum OPG/RANKL levels in context with underlying disease, age, co-morbidities, bone density, and fractures has derived. This review aims to provide an overview if and to which extent serum OPG and RANKL levels may reflect bone metabolism in patients with osteoporosis and metabolic bone disease.

Keywords

Clinical studies OPG/RANKL/RANK Osteoporosis Hepatic osteodystrophy Metabolic bone disease 

Osteoprotegerin (OPG) und Receptor Activator for Nuclear Factor kappaB Ligand (RANKL) Bestimmung im Serum: Sinn oder Unsinn?

Zusammenfassung

Der Knochen unterliegt einem ständigen Umbauprozess, wobei das Zusammenspiel zwischen Knochenneubildung durch die Osteoblasten und Knochenresorption durch die Osteoklasten über das OPG/RANKL/RANK-System streng geregelt ist. OPG wird von Osteoblasten und deren Vorläuferzellen produziert, kommt jedoch nahezu ubiquitär im Organismus vor. RANKL wird in erster Linie von Osteoklasten und immunkompetenten Zellen produziert, und bewirkt durch die Bindung an seinen Rezeptor RANK die Aktivierung, Proliferation und Verringerung der Apoptoserate von Osteoklasten. Seit Assays zur Bestimmung der OPG und RANKL Serumspiegel am Markt erhältlich sind, steht die Evaluierung der möglichen Zusammenhänge von Serumkonzentrationen dieser Key-Regulatoren in Relation zu Aktivität von metabolischen Knochenstoffwechselstörungen, Alter, Geschlecht, Knochendichte und Frakturrisiko im Fokus des wissenschaftlichen Interesses. Inhalt des aktuellen Review Artikels ist es, eine Zusammenfassung der derzeit vorliegenden publizierten Daten von Serum OPG und RANKL Spiegeln und deren Zusammenhang mit Veränderung des Knochenstoffwechsels zu geben.

Schlüsselwörter

Klinische Studien OPG/RANKL/RANK Osteoporose Hepatische Osteodystrophie Metabolische Knochenstoffwechselstörung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89(2): 309–319, 1997CrossRefPubMedGoogle Scholar
  2. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 139(3): 1329–1337, 1998CrossRefPubMedGoogle Scholar
  3. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA, 95(7): 3597–3602, 1998CrossRefPubMedGoogle Scholar
  4. Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402(6759): 304–309, 1999CrossRefPubMedGoogle Scholar
  5. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2): 165–176, 1998CrossRefPubMedGoogle Scholar
  6. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390(6656): 175–179, 1997CrossRefPubMedGoogle Scholar
  7. Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA, 96(7): 3540–3545, 1999CrossRefPubMedGoogle Scholar
  8. Fuller K, Wong B, Fox S, et al. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med, 188(5): 997–1001, 1998CrossRefPubMedGoogle Scholar
  9. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a regulator of immune responses and bone physiology. Immunol Today, 21(10): 495–502, 2000CrossRefPubMedGoogle Scholar
  10. Hofbauer LC. Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol, 141(3): 195–210, 1999CrossRefPubMedGoogle Scholar
  11. Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 15(1): 2–12, 2000CrossRefPubMedGoogle Scholar
  12. Bucay N, Sarosi I, Dunstan CR, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 12(9): 1260–1268, 1998CrossRefPubMedGoogle Scholar
  13. Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun, 247(3): 610–615, 1998CrossRefPubMedGoogle Scholar
  14. Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res, 16(2): 348–360, 2001CrossRefPubMedGoogle Scholar
  15. Hofbauer LC, Schoppet M. Serum measurement of osteoprotegerin – clinical relevance and potential applications. Eur J Endocrinol, 145(6): 681–683, 2001CrossRefPubMedGoogle Scholar
  16. Rogers A, Eastell R. Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab, 90(11): 6323–6331, 2005CrossRefPubMedGoogle Scholar
  17. Alexopoulou O, Jamart J, Devogelaer JP, et al. Bone density and markers of bone remodeling in type 1 male diabetic patients. Diabetes Metab, 32(5 Pt 1): 453–458, 2006CrossRefPubMedGoogle Scholar
  18. Uemura H, Yasui T, Miyatani Y, et al. Circulating profiles of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in post-menopausal women. J Endocrinol Invest, 31(2): 163–168, 2008PubMedGoogle Scholar
  19. Zhao HY, Liu JM, Ning G, et al. Relationships between insulin-like growth factor-I (IGF-I) and OPG, RANKL, bone mineral density in healthy Chinese women. Osteoporos Int, 19(2): 221–226, 2008CrossRefPubMedGoogle Scholar
  20. Kudlacek S, Schneider B, Woloszczuk W, et al. Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone, 32(6): 681–686, 2003CrossRefPubMedGoogle Scholar
  21. Kudlacek S, Willvonseder R, Stohlawetz P, et al. Immunology and aging. Aging Male, 3(3): 137–142, 2000CrossRefPubMedGoogle Scholar
  22. Nabipour I, Larijani B, Vahdat K, et al. Relationships among serum receptor of nuclear factor-kappa B ligand, osteoprotegerin, high- sensitivity C-reactive protein, and bone mineral density in postmenopausal women: osteoimmunity versus osteoinflammatory. Menopause, 16(5): 950–955, 2009CrossRefPubMedGoogle Scholar
  23. Fahrleitner-Pammer A, Dobnig H, Piswanger-Soelkner C, et al. Osteoprotegerin serum levels in women: correlation with age, bone mass, bone turnover and fracture status. Wien Klin Wochenschr, 115(9): 291–297, 2003CrossRefPubMedGoogle Scholar
  24. Grigorie D, Neacsu E, Marinescu M, Popa O. Circulating osteoprotegerin and leptin levels in postmenopausal women with and without osteoporosis. Rom J Intern Med, 41(4): 409–415, 2003PubMedGoogle Scholar
  25. Mezquita-Raya P, de la Higuera M, Garcia DF, Alonso G, et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos Int, 16(11): 1368–1374, 2005CrossRefPubMedGoogle Scholar
  26. Oh ES, Rhee EJ, Oh KW, et al. Circulating osteoprotegerin levels are associated with age, waist-to-hip ratio, serum total cholesterol, and low-density lipoprotein cholesterol levels in healthy Korean women. Metabolism, 54(1): 49–54, 2005CrossRefPubMedGoogle Scholar
  27. Oh KW, Rhee EJ, Lee WY, et al. Circulating osteoprotegerin and receptor activator of NF-kappaB ligand system are associated with bone metabolism in middle-aged males. Clin Endocrinol (Oxf), 62(1): 92–98, 2005CrossRefGoogle Scholar
  28. Abrahamsen B, Hjelmborg JV, Kostenuik P, et al. Circulating amounts of osteoprotegerin and RANK ligand: genetic influence and relationship with BMD assessed in female twins. Bone, 36(4): 727–735, 2005CrossRefPubMedGoogle Scholar
  29. Angelopoulos NG, Goula A, Katounda E, et al. Circulating osteoprotegerin and receptor activator of NF-kappaB ligand system in patients with beta-thalassemia major. J Bone Miner Metab, 25(1): 60–67, 2007CrossRefPubMedGoogle Scholar
  30. Oelzner P, Franke S, Lehmann G, et al. Soluble receptor activator of NFkappaB-ligand and osteoprotegerin in rheumatoid arthritis – relationship with bone mineral density, disease activity and bone turnover. Clin Rheumatol, 26(12): 2127–2135, 2007CrossRefPubMedGoogle Scholar
  31. Gugatschka M, Hoeller A, Fahrleitner-Pammer A, et al. Calcium supply, bone mineral density and genetically defined lactose maldigestion in a cohort of elderly men. J Endocrinol Invest, 30(1): 46–51, 2007PubMedGoogle Scholar
  32. Pennisi P, Signorelli SS, Riccobene S, et al. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int, 15(5): 389–395, 2004CrossRefPubMedGoogle Scholar
  33. Szulc P, Hofbauer LC, Heufelder AE, et al. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab, 86(7): 3162–3165, 2001CrossRefPubMedGoogle Scholar
  34. Stern A, Laughlin GA, Bergstrom J, Barrett-Connor E. The sex-specific association of serum osteoprotegerin and receptor activator of nuclear factor kappaB legend with bone mineral density in older adults: the Rancho Bernardo study. Eur J Endocrinol, 156(5): 555–562, 2007CrossRefPubMedGoogle Scholar
  35. Coen G, Ballanti P, Fischer MS, et al. Serum leptin in dialysis renal osteodystrophy. Am J Kidney Dis, 42(5): 1036–1042, 2003CrossRefPubMedGoogle Scholar
  36. Holecki M, Zahorska-Markiewicz B, Janowska J, et al. Osteoprotegerin – does it play a protective role in the pathogenesis of bone loss in obese perimenopausal women? Endokrynol Pol 58(1): 7–10, 2007PubMedGoogle Scholar
  37. Ohwada R, Hotta M, Sato K, et al. The relationship between serum levels of estradiol and osteoprotegerin in patients with anorexia nervosa. Endocr J, 54(6): 953–959, 2007CrossRefPubMedGoogle Scholar
  38. Szalay F, Hegedus D, Lakatos PL, et al. High serum osteoprotegerin and low RANKL in primary biliary cirrhosis. J Hepatol, 38(4): 395–400, 2003CrossRefPubMedGoogle Scholar
  39. Dobnig H, Hofbauer LC, Viereck V, et al. Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int, 17(5): 693–703, 2006CrossRefPubMedGoogle Scholar
  40. Fahrleitner A, Prenner G, Kniepeiss D, et al. Serum osteoprotegerin levels in patients after liver transplantation and correlation to bone turnover, bone mineral density and fracture status. Wien Klin Wochenschr, 114(15–16): 717–724, 2002PubMedGoogle Scholar
  41. Fabrega E, Orive A, Garcia-Suarez C, et al. Osteoprotegerin and RANKL in alcoholic liver cirrhosis. Liver Int, 25(2): 305–310, 2005CrossRefPubMedGoogle Scholar
  42. Fiore CE, Pennisi P, Ferro G, et al. Altered osteoprotegerin/RANKL ratio and low bone mineral density in celiac patients on long-term treatment with gluten-free diet. Horm Metab Res, 38(6): 417–422, 2006CrossRefPubMedGoogle Scholar
  43. Herrmann M, Kraenzlin M, Pape G, et al. Relation between homocysteine and biochemical bone turnover markers and bone mineral density in peri- and post-menopausal women. Clin Chem Lab Med, 43(10): 1118–1123, 2005CrossRefPubMedGoogle Scholar
  44. Monegal A, Navasa M, Peris P, et al. Serum osteoprotegerin and its ligand in cirrhotic patients referred for orthotopic liver transplantation: relationship with metabolic bone disease. Liver Int, 27(4): 492–497, 2007CrossRefPubMedGoogle Scholar
  45. Chiba Y, Onouchi T, Ikeda T, et al. Implications of measuring soluble receptor activators of nuclear factor-kappaB ligand and osteoprotegerin in bone metabolism of elderly women. Gerontology, 55(3): 275–280, 2009CrossRefPubMedGoogle Scholar
  46. Dai Y, Shen L. Relationships between serum osteoprotegerin, matrix metalloproteinase-2 levels and bone metabolism in postmenopausal women. Chin Med J (Engl), 120(22): 2017–2021, 2007Google Scholar
  47. Fahrleitner A, Prenner G, Leb G, et al. Serum osteoprotegerin is a major determinant of bone density development and prevalent vertebral fracture status following cardiac transplantation. Bone, 32(1): 96–106, 2003CrossRefPubMedGoogle Scholar
  48. Bernstein CN. Inflammatory bowel diseases as secondary causes of osteoporosis. Curr Osteoporos Rep, 4(3): 116–123, 2006CrossRefPubMedGoogle Scholar
  49. Moschen AR, Kaser A, Stadlmann S, et al. The RANKL/OPG system and bone mineral density in patients with chronic liver disease. J Hepatol, 43(6): 973–983, 2005CrossRefPubMedGoogle Scholar
  50. Trofimov S, Pantsulaia I, Kobyliansky E, Livshits G. Circulating levels of receptor activator of nuclear factor-kappaB ligand/osteoprotegerin/macrophage-colony stimulating factor in a presumably healthy human population. Eur J Endocrinol, 150(3): 305–311, 2004CrossRefPubMedGoogle Scholar
  51. Fahrleitner-Pammer A, Dobnig H, Dimai HP, et al. The effect of RANKL and OPG on bone mineral density in pre-dialysis chronic renal failure. Clin Nephrol, 71(6): 652–659, 2009PubMedGoogle Scholar
  52. Schett G, Kiechl S, Redlich K, et al. Soluble RANKL and risk of nontraumatic fracture. JAMA, 291(9): 1108–1113, 2004CrossRefPubMedGoogle Scholar
  53. Li EK, Tam LS, Griffith JF, et al. High prevalence of asymptomatic vertebral fractures in Chinese women with systemic lupus erythematosus. J Rheumatol, 36(8): 1646–1652, 2009CrossRefPubMedGoogle Scholar
  54. Messalli EM, Mainini G, Scaffa C, et al. Raloxifene therapy interacts with serum osteoprotegerin in postmenopausal women. Maturitas, 56(1): 38–44, 2007CrossRefPubMedGoogle Scholar
  55. Fernandez-Garcia D, Munoz-Torres M, Mezquita-Raya P, et al. Effects of raloxifene therapy on circulating osteoprotegerin and RANK ligand levels in post-menopausal osteoporosis. J Endocrinol Invest, 31(5): 416–421, 2008PubMedGoogle Scholar
  56. Dundar U, Kavuncu V, Ciftci IH, et al. The effect of risedronate treatment on serum cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. J Bone Miner Metab, 27(4): 464–470, 2009CrossRefPubMedGoogle Scholar
  57. Buxton EC, Yao W, Lane NE. Changes in serum receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and interleukin-6 levels in patients with glucocorticoid-induced osteoporosis treated with human parathyroid hormone (1–34). J Clin Endocrinol Metab, 89(7): 3332–3336, 2004CrossRefPubMedGoogle Scholar
  58. Anastasilakis AD, Goulis DG, Polyzos SA, et al. Acute changes in serum osteoprotegerin and receptor activator for nuclear factor-kappaB ligand levels in women with established osteoporosis treated with teriparatide. Eur J Endocrinol, 158(3): 411–415, 2008CrossRefPubMedGoogle Scholar
  59. Anastasilakis AD, Goulis DG, Polyzos SA, et al. Serum osteoprotegerin and RANKL are not specifically altered in women with postmenopausal osteoporosis treated with teriparatide or risedronate: a randomized, controlled trial. Horm Metab Res, 40(4): 281–285, 2008CrossRefPubMedGoogle Scholar
  60. Reyes-Garcia R, Munoz-Torres M, Garcia DF, et al. Effects of alendronate treatment on serum levels of osteoprotegerin and total receptor activator of nuclear factor kappaB in women with postmenopausal osteoporosis. Menopause, 17(1): 140–144, 2010CrossRefPubMedGoogle Scholar
  61. Miheller P, Muzes G, Racz K, et al. Changes of OPG and RANKL concentrations in Crohn's disease after infliximab therapy. Inflamm Bowel Dis, 13(11): 1379–1384, 2007CrossRefPubMedGoogle Scholar
  62. Vis M, Havaardsholm EA, Haugeberg G, et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis, 65(11): 1495–1499, 2006CrossRefPubMedGoogle Scholar
  63. Cibulka R, Racek J, Pikner R, et al. Effect of L-carnitine supplementation on secondary hyperparathyroidism and bone metabolism in hemodialyzed patients. Calcif Tissue Int, 81(2): 99–106, 2007CrossRefPubMedGoogle Scholar
  64. Coen G, Ballanti P, Balducci A, et al. Serum osteoprotegerin and renal osteodystrophy. Nephrol Dial Transplant, 17(2): 233–238, 2002CrossRefPubMedGoogle Scholar
  65. Fukagawa M, Kazama JJ, Kurokawa K. Renal osteodystrophy and secondary hyperparathyroidism. Nephrol Dial Transplant, 17(Suppl 10): 2–5, 2002PubMedGoogle Scholar
  66. Santori C, Ceccanti M, Diacinti D, et al. Skeletal turnover, bone mineral density, and fractures in male chronic abusers of alcohol. J Endocrinol Invest, 31(4): 321–326, 2008PubMedGoogle Scholar
  67. Gonzalez-Calvin JL, Mundi JL, Casado-Caballero FJ, et al. Bone mineral density and serum levels of soluble tumor necrosis factors, estradiol, and osteoprotegerin in postmenopausal women with cirrhosis after viral hepatitis. J Clin Endocrinol Metab, 94(12): 4844–4850, 2009CrossRefPubMedGoogle Scholar
  68. Hegedus D, Ferencz V, Lakatos PL, et al. Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J Bone Miner Res, 17(11): 1961–1967, 2002CrossRefPubMedGoogle Scholar
  69. Fabrega E, Orive A, Garcia-Unzueta M, et al. Osteoprotegerin and receptor activator of nuclear factor-kappaB ligand system in the early post-operative period of liver transplantation. Clin Transplant, 20(3): 383–388, 2006CrossRefPubMedGoogle Scholar
  70. Tan KB, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene, 204(1–2): 35–46, 1997CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Transplantation, Department of SurgeryMedical University of GrazGrazAustria
  2. 2.Division of Endocrinology and Nuclear Medicine, Department of Internal MedicineMedical University of GrazGrazAustria

Personalised recommendations