Wiener Medizinische Wochenschrift

, Volume 160, Issue 15–16, pp 377–390 | Cite as

Adipokine update – neue Moleküle, neue Funktionen

  • Carmen Gelsinger
  • Alexander Tschoner
  • Susanne Kaser
  • Christoph F. Ebenbichler
Themenschwerpunkt

Zusammenfassung

Die Adipositasprävalenz ist ein weltweit fortschreitendes Problem. Aktuelle Forschungsergebnisse zeigen, dass Fettgewebe zunehmend als ein endokrines Organ, welches aktiv in viele physiologische Abläufe eingreift, anzusehen ist. Diese Produkte des Fettgewebes, so genannte Adipokine, spielen in der Pathogenese des metabolischen Syndroms und kardiovaskulärer Erkrankungen eine wesentliche Rolle. Weiters unterscheiden sich die zwei hauptsächlichen Fettdepots – das subkutane und das viszerale Fett – in ihrer Fähigkeit Adipokine zu sezernieren. In den rezenten Jahren wurde die Wichtigkeit der Verbindung zwischen viszeralem Fett und der Entwicklung einer Insulinresistenz, eines Diabetes mellitus Typ 2 und einer Dyslipidämie erkannt. Deshalb ist die Akkumulation von viszeralem Fett, das ein anderes Muster an Adipokinen sezerniert, mit einer erhöhten Morbiditäts- und Mortalitätsrate assoziiert. Diese Arbeit soll einen Überblick über neue, erst kürzlich charakterisierte Adipokine geben und ihre Rolle in der Pathogenese der Insulinresistenz, der Entwicklung der Atherosklerose, sowie weiterer metabolischer Komplikationen diskutieren.

Schlüsselwörter

Adipositas Viszerales Fettgewebe Adipokine Metabolisches Syndrom Insulinresistenz Diabetes mellitus 

Adipokine update – new molecules, new functions

Summary

The prevalence of obesity is rising worldwide. Recent research findings show that adipose tissue is a highly active endocrine organ, which is involved in many physiological processes. These metabolic processes are influenced by products of the adipose tissue, so-called adipokines, which play a crucial role in the pathogenesis of the metabolic syndrome and cardiovascular disease. In addition, the two major fat depots – intraabdominal and subcutaneous – differ in their ability to secrete adipokines. In recent years the importance of the association between intraabdominal fat and the development of insulin resistance, diabetes mellitus type 2 and dyslipidemia was recognized. Therefore, accumulation of visceral adipose tissue contributes due to its ability to secrete a different pattern of adipokines to increased morbidity and mortality. This review aims to characterize novel, newly recognized adipokines and to discuss their roles in the pathogenesis of insulin resistance and atherosclerosis, as well as other metabolic complications.

Keywords

Obesity Visceral adipose tissue Adipokines Metabolic syndrome Insulin resistance Diabetes Inflammatory disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Kopelman PG. Obesity as a medical problem. Nature, 404: 635–643, 2000PubMedGoogle Scholar
  2. Aggoun Y. Obesity, metabolic syndrome, and cardiovascular disease. Pediatr Res, 61: 653–659, 2007PubMedGoogle Scholar
  3. Daniels SR, Jacobson MS, McCrindle BW, et al. American Heart Association Childhood Obesity Research Summit: executive summary. Circulation, 119: 2114–2123, 2009PubMedCrossRefGoogle Scholar
  4. Eckel RH, York DA, Rossner S, et al. Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation, 110: 2968–2975, 2004PubMedCrossRefGoogle Scholar
  5. Fobi MA. Surgical treatment of obesity: a review. J Natl Med Assoc, 96: 61–75, 2004PubMedGoogle Scholar
  6. Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes, 14: 365–369, 2007PubMedGoogle Scholar
  7. Kannel WB, Dawber TR, Kagan A, et al. Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Ann Intern Med, 55: 33–50, 1961PubMedGoogle Scholar
  8. Gill T, Chittleborough C, Taylor A, et al. Body mass index, waist hip ratio, and waist circumference: which measure to classify obesity? Soz Praventivmed, 48: 191–200, 2003PubMedGoogle Scholar
  9. Bjorntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis, 10: 493–496, 1990PubMedGoogle Scholar
  10. Sparrow D, Borkan GA, Gerzof SG, et al. Relationship of fat distribution to glucose tolerance. Results of computed tomography in male participants of the Normative Aging Study. Diabetes, 35: 411–415, 1986PubMedCrossRefGoogle Scholar
  11. Fujioka S, Matsuzawa Y, Tokunaga K, et al. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism, 36: 54–59, 1987PubMedCrossRefGoogle Scholar
  12. Seidell JC, Bjorntorp P, Sjostrom L, et al. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism, 39: 897–901, 1990PubMedCrossRefGoogle Scholar
  13. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care, 14: 1132–1143, 1991PubMedCrossRefGoogle Scholar
  14. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett, 580: 2917–2921, 2006PubMedCrossRefGoogle Scholar
  15. Tarquini R, Lazzeri C, Laffi G, et al. Adiponectin and the cardiovascular system: from risk to disease. Intern Emerg Med, 2: 165–176, 2007PubMedCrossRefGoogle Scholar
  16. MacDougald OA, Burant CF. The rapidly expanding family of adipokines. Cell Metab, 6: 159–161, 2007PubMedCrossRefGoogle Scholar
  17. Tilg H, Moschen AR. Role of adiponectin and PBEF/visfatin as regulators of inflammation: involvement in obesity-associated diseases. Clin Sci (Lond), 114: 275–288, 2008CrossRefGoogle Scholar
  18. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 112: 1821–1830, 2003PubMedGoogle Scholar
  19. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest, 112: 1796–1808, 2003PubMedGoogle Scholar
  20. Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm, 74: 443–477, 2006PubMedCrossRefGoogle Scholar
  21. Toborek M, Kaiser S. Endothelial cell functions. Relationship to atherogenesis. Basic Res Cardiol, 94: 295–314, 1999PubMedCrossRefGoogle Scholar
  22. Szmitko PE, Teoh H, Stewart DJ, et al. Adiponectin and cardiovascular disease: state of the art? Am J Physiol Heart Circ Physiol, 292: H1655–H1663, 2007PubMedCrossRefGoogle Scholar
  23. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med, 340: 115–126, 1999PubMedCrossRefGoogle Scholar
  24. Di Gregorio GB, Yao-Borengasser A, Rasouli N, et al. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes, 54: 2305–2313, 2005PubMedCrossRefGoogle Scholar
  25. Rasouli N, Molavi B, Elbein SC, et al. Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab, 9: 1–10, 2007PubMedCrossRefGoogle Scholar
  26. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 89: 2548–2556, 2004PubMedCrossRefGoogle Scholar
  27. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med, 321: 337–343, 1989PubMedCrossRefGoogle Scholar
  28. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 14: 173–194, 1991PubMedCrossRefGoogle Scholar
  29. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259: 87–91, 1993PubMedCrossRefGoogle Scholar
  30. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest, 95: 2409–2415, 1995PubMedCrossRefGoogle Scholar
  31. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest, 115: 1111–1119, 2005PubMedGoogle Scholar
  32. Goralski KB, McCarthy TC, Hanniman EA, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem, 282: 28175–28188, 2007PubMedCrossRefGoogle Scholar
  33. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun, 221: 286–289, 1996PubMedCrossRefGoogle Scholar
  34. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 270: 26746–26749, 1995PubMedCrossRefGoogle Scholar
  35. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem, 271: 10697–10703, 1996PubMedCrossRefGoogle Scholar
  36. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem, 120: 803–812, 1996PubMedGoogle Scholar
  37. Behre CJ. Adiponectin, obesity and atherosclerosis. Scand J Clin Lab Invest, 67: 449–458, 2007PubMedCrossRefGoogle Scholar
  38. Pineiro R, Iglesias MJ, Gallego R, et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett, 579: 5163–5169, 2005PubMedCrossRefGoogle Scholar
  39. Delaigle AM, Jonas JC, Bauche IB, et al. Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology, 145: 5589–5597, 2004PubMedCrossRefGoogle Scholar
  40. Wolf AM, Wolf D, Avila MA, et al. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol, 44: 537–543, 2006PubMedCrossRefGoogle Scholar
  41. Berner HS, Lyngstadaas SP, Spahr A, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone, 35: 842–849, 2004PubMedCrossRefGoogle Scholar
  42. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA, 98: 2005–2010, 2001PubMedCrossRefGoogle Scholar
  43. Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem, 278: 9073–9085, 2003PubMedCrossRefGoogle Scholar
  44. Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem, 278: 40352–40363, 2003PubMedCrossRefGoogle Scholar
  45. Wang Y, Lam KS, Chan L, et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem, 281: 16391–16400, 2006PubMedCrossRefGoogle Scholar
  46. Neumeier M, Weigert J, Schaffler A, et al. Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol, 79: 803–808, 2006PubMedCrossRefGoogle Scholar
  47. Hug C, Wang J, Ahmad NS, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA, 101: 10308–10313, 2004PubMedCrossRefGoogle Scholar
  48. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423: 762–769, 2003PubMedCrossRefGoogle Scholar
  49. Kharroubi I, Rasschaert J, Eizirik DL, et al. Expression of adiponectin receptors in pancreatic beta cells. Biochem Biophys Res Commun, 312: 1118–1122, 2003PubMedCrossRefGoogle Scholar
  50. Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem, 279: 30817–30822, 2004PubMedCrossRefGoogle Scholar
  51. Rasmussen MS, Lihn AS, Pedersen SB, et al. Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring), 14: 28–35, 2006CrossRefGoogle Scholar
  52. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab, 285: E527–E533, 2003PubMedGoogle Scholar
  53. Fasshauer M, Klein J, Neumann S, et al. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett, 507: 142–146, 2001PubMedCrossRefGoogle Scholar
  54. Fasshauer M, Klein J, Neumann S, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 290: 1084–1089, 2002PubMedCrossRefGoogle Scholar
  55. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia, 46: 1594–1603, 2003PubMedCrossRefGoogle Scholar
  56. Gil-Campos M, Canete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr, 23: 963–974, 2004PubMedCrossRefGoogle Scholar
  57. Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun, 323: 630–635, 2004PubMedCrossRefGoogle Scholar
  58. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med, 8: 1288–1295, 2002PubMedCrossRefGoogle Scholar
  59. Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA, 99: 16309–16313, 2002PubMedCrossRefGoogle Scholar
  60. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab, 13: 84–89, 2002PubMedCrossRefGoogle Scholar
  61. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 7: 941–946, 2001PubMedCrossRefGoogle Scholar
  62. Lihn AS, Bruun JM, He G, et al. Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Mol Cell Endocrinol, 219: 9–15, 2004PubMedCrossRefGoogle Scholar
  63. Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest, 108: 1875–1881, 2001PubMedGoogle Scholar
  64. Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med, 7: 947–953, 2001PubMedCrossRefGoogle Scholar
  65. Chinetti G, Zawadski C, Fruchart JC, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun, 314: 151–158, 2004PubMedCrossRefGoogle Scholar
  66. Tan KC, Xu A, Chow WS, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin Endocrinol Metab, 89: 765–769, 2004PubMedCrossRefGoogle Scholar
  67. Fargnoli J, Sun Q, Olenczuk D, et al. Resistin is associated with biomarkers of inflammation while total and HMW adiponectin are associated with biomarkers of inflammation, insulin resistance, and endothelial function. Eur J Endocrinol, 162: 281–288, 2010PubMedCrossRefGoogle Scholar
  68. Engl J, Sturm W, Sandhofer A, et al. Effect of pronounced weight loss on visceral fat, liver steatosis and adiponectin isoforms. Eur J Clin Invest, 38: 238–244, 2008PubMedCrossRefGoogle Scholar
  69. Engl J, Bobbert T, Ciardi C, et al. Effects of pronounced weight loss on adiponectin oligomer composition and metabolic parameters. Obesity (Silver Spring), 15: 1172–1178, 2007CrossRefGoogle Scholar
  70. Rabe K, Lehrke M, Parhofer KG, et al. Adipokines and insulin resistance. Mol Med, 14: 741–751, 2008PubMedCrossRefGoogle Scholar
  71. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol, 115: 911–919, 2005PubMedCrossRefGoogle Scholar
  72. La Cava A, Alviggi C, Matarese G. Unraveling the multiple roles of leptin in inflammation and autoimmunity. J Mol Med, 82: 4–11, 2004PubMedCrossRefGoogle Scholar
  73. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature, 372: 425–432, 1994PubMedCrossRefGoogle Scholar
  74. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269: 543–546, 1995PubMedCrossRefGoogle Scholar
  75. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269: 540–543, 1995PubMedCrossRefGoogle Scholar
  76. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell, 83: 1263–1271, 1995PubMedCrossRefGoogle Scholar
  77. Tartaglia LA. The leptin receptor. J Biol Chem, 272: 6093–6096, 1997PubMedGoogle Scholar
  78. Myers MG, Cowley MA, Munzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol, 70: 537–556, 2008PubMedCrossRefGoogle Scholar
  79. Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab, 93: S64–S73, 2008PubMedCrossRefGoogle Scholar
  80. Buettner C, Pocai A, Muse ED, et al. Critical role of STAT3 in leptin's metabolic actions. Cell Metab, 4: 49–60, 2006PubMedCrossRefGoogle Scholar
  81. Buettner C, Muse ED, Cheng A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med, 14: 667–675, 2008PubMedCrossRefGoogle Scholar
  82. Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature, 404: 661–671, 2000PubMedGoogle Scholar
  83. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology, 138: 4489–4492, 1997PubMedCrossRefGoogle Scholar
  84. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411: 480–484, 2001PubMedCrossRefGoogle Scholar
  85. Zhang W, Della-Fera MA, Hartzell DL, et al. Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sci, 83: 35–42, 2008PubMedCrossRefGoogle Scholar
  86. Fantuzzi G. Three questions about leptin and immunity. Brain Behav Immun, 23(4): 405–410, 2008PubMedCrossRefGoogle Scholar
  87. Sanchez-Margalet V, Martin-Romero C, Santos-Alvarez J, et al. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol, 133: 11–19, 2003PubMedCrossRefGoogle Scholar
  88. Lam QL, Lu L. Role of leptin in immunity. Cell Mol Immunol, 4: 1–13, 2007PubMedGoogle Scholar
  89. Reseland JE, Syversen U, Bakke I, et al. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res, 16: 1426–1433, 2001PubMedCrossRefGoogle Scholar
  90. Reseland JE, Gordeladze JO. Role of leptin in bone growth: central player or peripheral supporter? FEBS Lett, 528: 40–42, 2002PubMedCrossRefGoogle Scholar
  91. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 100: 197–207, 2000PubMedCrossRefGoogle Scholar
  92. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell, 111: 305–317, 2002PubMedCrossRefGoogle Scholar
  93. Jaffe T, Schwartz B. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int J Cancer, 123: 2543–2556, 2008PubMedCrossRefGoogle Scholar
  94. Ratke J, Entschladen F, Niggemann B, et al. Leptin stimulates the migration of colon carcinoma cells by multiple signalling pathways. Endocr Relat Cancer, 17(1): 179–189, 2010PubMedCrossRefGoogle Scholar
  95. Frankenberry KA, Skinner H, Somasundar P, et al. Leptin receptor expression and cell signaling in breast cancer. Int J Oncol, 28: 985–993, 2006PubMedGoogle Scholar
  96. Somasundar P, Frankenberry KA, Skinner H, et al. Prostate cancer cell proliferation is influenced by leptin. J Surg Res, 118: 71–82, 2004PubMedCrossRefGoogle Scholar
  97. Lang K, Ratke J. Leptin and adiponectin: new players in the field of tumor cell and leukocyte migration. Cell Commun Signal, 7: 27, 2009PubMedCrossRefGoogle Scholar
  98. Wozniak SE, Gee LL, Wachtel MS, et al. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci, 54: 1847–1856, 2009PubMedCrossRefGoogle Scholar
  99. Bozaoglu K, Bolton K, McMillan J, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology, 148: 4687–4694, 2007PubMedCrossRefGoogle Scholar
  100. Roh SG, Song SH, Choi KC, et al. Chemerin – a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun, 362: 1013–1018, 2007PubMedCrossRefGoogle Scholar
  101. Yoshimura T, Oppenheim JJ. Chemerin reveals its chimeric nature. J Exp Med, 205: 2187–2190, 2008PubMedCrossRefGoogle Scholar
  102. Methner A, Hermey G, Schinke B, et al. A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem Biophys Res Commun, 233: 336–342, 1997PubMedCrossRefGoogle Scholar
  103. Zabel BA, Nakae S, Zuniga L, et al. Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J Exp Med, 205: 2207–2220, 2008PubMedCrossRefGoogle Scholar
  104. Cash JL, Hart R, Russ A, et al. Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J Exp Med, 205: 767–775, 2008PubMedCrossRefGoogle Scholar
  105. Wittamer V, Franssen JD, Vulcano M, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med, 198: 977–985, 2003PubMedCrossRefGoogle Scholar
  106. Takahashi M, Takahashi Y, Takahashi K, et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett, 582: 573–578, 2008PubMedCrossRefGoogle Scholar
  107. Ress C, Tschoner A, Engl J, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest, 2010 (in press)Google Scholar
  108. Sommer G, Garten A, Petzold S, et al. Visfatin/PBEF/Nampt: structure, regulation and potential function of a novel adipokine. Clin Sci (Lond), 115: 13–23, 2008CrossRefGoogle Scholar
  109. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 307: 426–430, 2005PubMedCrossRefGoogle Scholar
  110. Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem, 15: 1851–1862, 2008PubMedCrossRefGoogle Scholar
  111. Hug C, Lodish HF. Medicine. Visfatin: a new adipokine. Science, 307: 366–367, 2005PubMedCrossRefGoogle Scholar
  112. Fukuhara A, Matsuda M, Nishizawa M, et al. Retraction. Science, 318: 565, 2007PubMedCrossRefGoogle Scholar
  113. Ciardi C, Tatarczyk T, Tschoner A, et al. Effect of postprandial lipemia on plasma concentrations of A-FABP, RBP-4 and visfatin. Nutr Metab Cardiovasc Dis, 2009 (Epub ahed of print)Google Scholar
  114. Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab, 6: 363–375, 2007PubMedCrossRefGoogle Scholar
  115. Wang T, Zhang X, Bheda P, et al. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol, 13: 661–662, 2006PubMedCrossRefGoogle Scholar
  116. Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol, 178: 1748–1758, 2007PubMedGoogle Scholar
  117. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes, 54: 2911–2916, 2005PubMedCrossRefGoogle Scholar
  118. Liu SW, Qiao SB, Yuan JS, et al. Association of plasma visfatin levels with inflammation, atherosclerosis, and acute coronary syndromes in humans. Clin Endocrinol (Oxf), 71(2): 202–207, 2008CrossRefGoogle Scholar
  119. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation, 115: 972–980, 2007PubMedCrossRefGoogle Scholar
  120. Takebayashi K, Suetsugu M, Wakabayashi S, et al. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes mellitus. Metabolism, 56: 451–458, 2007PubMedCrossRefGoogle Scholar
  121. Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA, 102: 10610–10615, 2005PubMedCrossRefGoogle Scholar
  122. Li Q, Chen R, Moriya J, et al. A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J Int Med Res, 36: 625–629, 2008PubMedGoogle Scholar
  123. Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57: 372–377, 2008PubMedCrossRefGoogle Scholar
  124. Aust G, Richter O, Rohm S, et al. Vaspin serum concentrations in patients with carotid stenosis. Atherosclerosis, 204(1): 262–266, 2008PubMedCrossRefGoogle Scholar
  125. Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 339: 430–436, 2006PubMedCrossRefGoogle Scholar
  126. Lee MK, Jekal Y, Im JA, et al. Reduced serum vaspin concentrations in obese children following short-term intensive lifestyle modification. Clin Chim Acta, 411(5–6): 381–385, 2010PubMedCrossRefGoogle Scholar
  127. Patel SD, Rajala MW, Rossetti L, et al. Disulfide-dependent multimeric assembly of resistin family hormones. Science, 304: 1154–1158, 2004PubMedCrossRefGoogle Scholar
  128. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature, 409: 307–312, 2001PubMedCrossRefGoogle Scholar
  129. Kim KH, Lee K, Moon YS, et al. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem, 276: 11252–11256, 2001PubMedCrossRefGoogle Scholar
  130. Holcomb IN, Kabakoff RC, Chan B, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J, 19: 4046–4055, 2000PubMedCrossRefGoogle Scholar
  131. Graveleau C, Zaha VG, Mohajer A, et al. Mouse and human resistins impair glucose transport in primary mouse cardiomyocytes, and oligomerization is required for this biological action. J Biol Chem, 280: 31679–31685, 2005PubMedCrossRefGoogle Scholar
  132. Rangwala SM, Rich AS, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes, 53: 1937–1941, 2004PubMedCrossRefGoogle Scholar
  133. Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin. Science, 303: 1195–1198, 2004PubMedCrossRefGoogle Scholar
  134. Banerjee RR, Lazar MA. Resistin: molecular history and prognosis. J Mol Med, 81: 218–226, 2003PubMedGoogle Scholar
  135. Rajala MW, Qi Y, Patel HR, et al. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes, 53: 1671–1679, 2004PubMedCrossRefGoogle Scholar
  136. Way JM, Gorgun CZ, Tong Q, et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem, 276: 25651–25653, 2001PubMedCrossRefGoogle Scholar
  137. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, et al. Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab, 88: 5452–5455, 2003PubMedCrossRefGoogle Scholar
  138. Savage DB, Sewter CP, Klenk ES, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes, 50: 2199–2202, 2001PubMedCrossRefGoogle Scholar
  139. Nagaev I, Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun, 285: 561–564, 2001PubMedCrossRefGoogle Scholar
  140. McTernan CL, McTernan PG, Harte AL, et al. Resistin, central obesity, and type 2 diabetes. Lancet, 359: 46–47, 2002PubMedCrossRefGoogle Scholar
  141. McTernan PG, McTernan CL, Chetty R, et al. Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab, 87: 2407, 2002PubMedCrossRefGoogle Scholar
  142. Hivert MF, Sullivan LM, Fox CS, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab, 93: 3165–3172, 2008PubMedCrossRefGoogle Scholar
  143. McTernan PG, Fisher FM, Valsamakis G, et al. Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab, 88: 6098–6106, 2003PubMedCrossRefGoogle Scholar
  144. Kaser S, Kaser A, Sandhofer A, et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun, 309: 286–290, 2003PubMedCrossRefGoogle Scholar
  145. Fasshauer M, Klein J, Neumann S, et al. Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 288: 1027–1031, 2001PubMedCrossRefGoogle Scholar
  146. de Souza Batista CM, Yang RZ, Lee MJ, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56: 1655–1661, 2007PubMedCrossRefGoogle Scholar
  147. Yang RZ, Lee MJ, Hu H, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 290: E1253–E1261, 2006PubMedCrossRefGoogle Scholar
  148. Lee DK, George SR, O'Dowd BF. Unravelling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. Trends Pharmacol Sci, 27: 190–194, 2006PubMedCrossRefGoogle Scholar
  149. Higuchi K, Masaki T, Gotoh K, et al. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology, 148: 2690–2697, 2007PubMedCrossRefGoogle Scholar
  150. Yue P, Jin H, Aillaud-Manzanera M, et al. Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab (Epub ahead of print), 2009Google Scholar
  151. Grisk O. Apelin and vascular dysfunction in type 2 diabetes. Cardiovasc Res, 74: 339–340, 2007PubMedCrossRefGoogle Scholar
  152. Zeng XJ, Zhang LK, Wang HX, et al. Apelin protects heart against ischemia/reperfusion injury in rat. Peptides, 30: 1144–1152, 2009PubMedCrossRefGoogle Scholar
  153. White RT, Damm D, Hancock N, et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem, 267: 9210–9213, 1992PubMedGoogle Scholar
  154. Gabrielsson BG, Johansson JM, Lonn M, et al. High expression of complement components in omental adipose tissue in obese men. Obes Res, 11: 699–708, 2003PubMedCrossRefGoogle Scholar
  155. Quadro L, Blaner WS, Salchow DJ, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. Embo J, 18: 4633–4644, 1999PubMedCrossRefGoogle Scholar
  156. Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 409: 729–733, 2001PubMedCrossRefGoogle Scholar
  157. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436: 356–362, 2005PubMedCrossRefGoogle Scholar
  158. Basualdo CG, Wein EE, Basu TK. Vitamin A (retinol) status of first nation adults with non-insulin-dependent diabetes mellitus. J Am Coll Nutr, 16: 39–45, 1997PubMedGoogle Scholar
  159. Abahusain MA, Wright J, Dickerson JW, et al. Retinol, alpha-tocopherol and carotenoids in diabetes. Eur J Clin Nutr, 53: 630–635, 1999PubMedCrossRefGoogle Scholar
  160. Graham TE, Yang Q, Bluher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med, 354: 2552–2563, 2006PubMedCrossRefGoogle Scholar
  161. Gavi S, Qurashi S, Melendez MM, et al. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes: response to Cho et al. Diabetes Care, 30: e7, 2007; author reply e8PubMedCrossRefGoogle Scholar
  162. Bobbert P, Weithauser A, Andres J, et al. Increased plasma retinol binding protein 4 levels in patients with inflammatory cardiomyopathy. Eur J Heart Fail, 11: 1163–1168, 2009PubMedCrossRefGoogle Scholar
  163. Yao-Borengasser A, Varma V, Bodles AM, et al. Retinol binding protein 4 expression in humans: relationship to insulin resistance, inflammation, and response to pioglitazone. J Clin Endocrinol Metab, 92: 2590–2597, 2007PubMedCrossRefGoogle Scholar
  164. Tschoner A, Sturm W, Engl J, et al. Retinol-binding protein 4, visceral fat, and the metabolic syndrome: effects of weight loss. Obesity (Silver Spring), 16: 2439–2444, 2008CrossRefGoogle Scholar
  165. Haider DG, Schindler K, Prager G, et al. Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab, 92: 1168–1171, 2007PubMedCrossRefGoogle Scholar
  166. Lim S, Choi SH, Jeong IK, et al. Insulin-sensitizing effects of exercise on adiponectin and retinol-binding protein-4 concentrations in young and middle-aged women. J Clin Endocrinol Metab, 93: 2263–2268, 2008PubMedCrossRefGoogle Scholar
  167. Balagopal P, Graham TE, Kahn BB, et al. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J Clin Endocrinol Metab, 92: 1971–1974, 2007PubMedCrossRefGoogle Scholar
  168. Ingelsson E, Sundstrom J, Melhus H, et al. Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly. Atherosclerosis, 206: 239–244, 2009PubMedCrossRefGoogle Scholar
  169. Makowski L, Hotamisligil GS. Fatty acid binding proteins – the evolutionary crossroads of inflammatory and metabolic responses. J Nutr, 134: 2464S–2468S, 2004PubMedGoogle Scholar
  170. Furuhashi M, Tuncman G, Gorgun CZ, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 447: 959–965, 2007PubMedCrossRefGoogle Scholar
  171. Tuncman G, Erbay E, Hom X, et al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA, 103: 6970–6975, 2006PubMedCrossRefGoogle Scholar
  172. Rhee EJ, Lee WY, Park CY, et al. The association of serum adipocyte fatty acid-binding protein with coronary artery disease in Korean adults. Eur J Endocrinol, 160(2): 165–172, 2008PubMedCrossRefGoogle Scholar
  173. Xu A, Wang Y, Xu JY, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem, 52: 405–413, 2006PubMedCrossRefGoogle Scholar
  174. Engl J, Ciardi C, Tatarczyk T, et al. A-FABP – a biomarker associated with the metabolic syndrome and/or an indicator of weight change? Obesity (Silver Spring), 16: 1838–1842, 2008CrossRefGoogle Scholar
  175. Engl J, Tschoner A, Willis M, et al. Adipocyte fatty acid binding protein during refeeding of female patients with anorexia nervosa. Eur J Nutr, 48: 403–408, 2009PubMedCrossRefGoogle Scholar
  176. Tso AW, Xu A, Sham PC, et al. Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care, 30: 2667–2672, 2007PubMedCrossRefGoogle Scholar
  177. Xu A, Tso AW, Cheung BM, et al. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation, 115: 1537–1543, 2007PubMedCrossRefGoogle Scholar
  178. Hancke K, Grubeck D, Hauser N, et al. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res Treat, 119(2): 367, 2010PubMedCrossRefGoogle Scholar
  179. Wang B, Trayhurn P. Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch, 452: 418–427, 2006PubMedCrossRefGoogle Scholar
  180. Hector J, Schwarzloh B, Goehring J, et al. TNF-alpha alters visfatin and adiponectin levels in human fat. Horm Metab Res, 39: 250–255, 2007PubMedCrossRefGoogle Scholar
  181. Mateo T, Naim Abu Nabah Y, Losada M, et al. A critical role for TNFalpha in the selective attachment of mononuclear leukocytes to angiotensin-II-stimulated arterioles. Blood, 110: 1895–1902, 2007PubMedCrossRefGoogle Scholar
  182. Hivert MF, Sullivan LM, Shrader P, et al. The association of tumor necrosis factor alpha receptor 2 and tumor necrosis factor alpha with insulin resistance and the influence of adipose tissue biomarkers in humans. Metabolism, 59(4): 540–546, 2010PubMedCrossRefGoogle Scholar
  183. Ogawa W, Kasuga M. Cell signaling. Fat stress and liver resistance. Science, 322: 1483–1484, 2008PubMedCrossRefGoogle Scholar
  184. Morange PE, Saut N, Alessi MC, et al. Association of plasminogen activator inhibitor (PAI)-1 (SERPINE1) SNPs with myocardial infarction, plasma PAI-1, and metabolic parameters: the HIFMECH study. Arterioscler Thromb Vasc Biol, 27: 2250–2257, 2007PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Carmen Gelsinger
    • 1
  • Alexander Tschoner
    • 1
  • Susanne Kaser
    • 1
  • Christoph F. Ebenbichler
    • 1
  1. 1.Universitätsklinik für Innere Medizin I, Department Innere MedizinMedizinische Universität InnsbruckInnsbruckAustria

Personalised recommendations