Wiener Medizinische Wochenschrift

, Volume 160, Issue 1–2, pp 8–19 | Cite as

Diabetes and Cardiovascular Disease: Is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR

Themenschwerpunkt

Summary

Type 2 diabetes is a rather complex metabolic disorder still associated with a 2-fold increased cardiovascular (CV) mortality despite a dramatic improvement in CV risk reduction by multifactorial intervention strategies. Intensive glucose control can also reduce CV morbidity, but this effect seems to be limited to younger patients with shorter duration of disease and no CV disease. Intensive glucose control – in particular when complex insulin strategies are used – is associated with a 5-fold increased risk for severe hypoglycemia, which could induce harm in some patients. In contrast to blood pressure and lipid-lowering interventions a reduction of CV mortality cannot be seen before 10–20 years after the start of the glucose-lowering intervention (metabolic memory, legacy effect). Future ongoing outcome studies in more than 50,000 patients will clarify whether new antidiabetic drugs – not inducing hypoglycemia or weight gain – will further improve the prognosis of T2DM patients.

Keywords

Diabetes Cardiovascular disease Glycemic control ACCORD ADVANCE VADT DIGAMI PROactive RECORD NICE-SUGAR 

Diabetes und Kardiovaskuläre Erkrankungen: Ist eine intensivierte Blutzucker-einstellung nützlich oder tödlich? Hinweise von ACCORD, ADVANCE, VADT, UKPDS, PROactive und NICE-SUGAR

Zusammenfassung

Typ 2 Diabetes ist eine komplexe Stoffwechselerkrankung, die unverändert mit einem zweifach erhöhtem kardiovaskulärem Sterberisiko assoziiert ist trotz der weitaus besseren Beeinflussung der kardiovaskulären Risikofaktoren durch multifaktorielle Interventionsstragegien. Die intensivierte Blutzuckerkontrolle kann ebenfalls die kardiovaskulären Ereignisse reduzieren, wobei dieser Effekt aber auf jüngere Patienten mit kurzer Diabetesdauer, relativ niedrigem HbA1c-Ausgangswert und ohne kardiovaskuläre Vorerkrankugen beschränkt sein dürfte. Die intensivierte Blutzuckerkontrolle erhöht allerdings das Risiko für schwere Hypoglykämien um das 5-fache. Im Gegensatz zur Senkung von Blutdruck und Cholesterin, findet sich eine Senkung der kardiovaskulären Mortalität erst 10–20 Jahre nach dem Start der Blutzuckersenkung. Zukünftige Endpunktstudien an mehr als 50.000 Patienten mit Typ 2 Diabetes werden zeigen, ob neue antidiabetische Therapiestrategien die Prognose der Patienten mit Typ 2 Diabetes weiter verbessern können.

Schlüsselwörter

Diabetes Cardiovascular Disease Glykämische Kontrolle ACCORD ADVANCE VADT DIGAMI PROactive RECORD NICE-SUGAR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet, 368: 1681–1688, 2006CrossRefPubMedGoogle Scholar
  2. Schernthaner G. Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res Clin Pract, 31(Suppl): S3–S13, 1996CrossRefPubMedGoogle Scholar
  3. Preis SR, Hwang SJ, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation, 119: 1728–1735, 2009CrossRefPubMedGoogle Scholar
  4. Turner R, Millns H, Neil H, et al. Risk factors for coronary artery disease in non-insulin dependant diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ, 316: 823–828, 1998PubMedGoogle Scholar
  5. The DECODE Study Group, on behalf of the European Diabetes Epidemiology Group. Is the current definition of diabetes relevant to mortality risk from all causes and cardiovascular and non-cardiovascular diseases? Diabetes Care, 26: 688–696, 2003CrossRefGoogle Scholar
  6. Asia Pacific Cohort Studies Collaboration. BG and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care, 27: 2836–2842, 2004CrossRefGoogle Scholar
  7. Khaw KT, Wareham N, Luben R, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). BMJ, 322: 15–18, 2001CrossRefPubMedGoogle Scholar
  8. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 352: 837–853, 1998CrossRefGoogle Scholar
  9. Juutilainen A, Lehto S, Rönnemaa T, et al. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care, 31: 714–719, 2008CrossRefPubMedGoogle Scholar
  10. Gerstein HC, Miller ME, Byington RP, et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med, 358: 2545–2559, 2008CrossRefPubMedGoogle Scholar
  11. Patel A, MacMahon S, Chalmers J, et al.; ADVANCE Collaborative Group. Intensive BG control and vascular outcomes in patients with type 2 diabetes. N Engl J Med, 358: 2560–2572, 2008Google Scholar
  12. Duckworth W, Abraira C, Moritz T, et al. Intensive glucose control and complications in American veterans with type 2 diabetes. N Engl J Med, 360: 129–139, 2009CrossRefPubMedGoogle Scholar
  13. Abraira C, Duckworth WC, Moritz T; VADT Group. Glycaemic separation and risk factor control in the Veterans Affairs Diabetes Trial: an interim report. Diabetes Obes Metab, 11: 150–156, 2009CrossRefPubMedGoogle Scholar
  14. Preis SR, Pencina MJ, Hwang SJ, et al. Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation, 120: 212–220, 2009CrossRefPubMedGoogle Scholar
  15. Greenfield S, Billimek J, Pellegrini F, et al. Comorbidity affects the relationship between glycemic control and cardiovascular outcomes in diabetes: a cohort study. Ann Intern Med, 151: 854–860, 2009PubMedGoogle Scholar
  16. Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest, 34: 535–542, 2004CrossRefPubMedGoogle Scholar
  17. Choudhary P, Lonnen K, Emery CJ, et al. Comparing hormonal and symptomatic responses to experimental hypoglycaemia in insulin- and sulphonylurea-treated Type 2 diabetes. Diabet Med, 26: 665–672, 2009CrossRefPubMedGoogle Scholar
  18. Landstedt-Hallin L, Englund A, Adamson U, et al. Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. J Intern Med, 246: 299–307, 1999CrossRefPubMedGoogle Scholar
  19. Desouza C, Salazar H, Cheong B, et al. Association of hypoglycemia and cardiac ischemia: a study based on continuous monitoring. Diabetes Care, 26: 1485–1489, 2003CrossRefPubMedGoogle Scholar
  20. Murphy NP, Ford-Adams ME, Ong KK, et al. Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia, 47: 1940–1947, 2004CrossRefPubMedGoogle Scholar
  21. Laptev DN, Riabykina GV, Seid-Guseinov AA. 24-hours monitoring of ECG and glucose level for detection of relations between glycemia and QT interval duration in patients with type 1 diabetes. Ter Arkh, 81: 28–33, 2009PubMedGoogle Scholar
  22. Ewing DJ, Boland O, Neilson JM, et al. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia, 34: 182–185, 1991CrossRefPubMedGoogle Scholar
  23. Robinson RT, Harris ND, Ireland RH, et al. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes, 52: 1469–1474, 2003CrossRefPubMedGoogle Scholar
  24. Gill GV, Woodward A, Casson IF, et al. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes – the 'dead in bed' syndrome revisited. Diabetologia, 52: 42–45, 2009CrossRefPubMedGoogle Scholar
  25. Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes management on macrovascular disease and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol, 75: 894–903, 1995CrossRefGoogle Scholar
  26. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 352: 837–853, 1998CrossRefGoogle Scholar
  27. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med, 353: 2643–2653, 2005CrossRefPubMedGoogle Scholar
  28. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucoseh control in type 2 diabetes. N Engl J Med, 359: 1577–1589, 2008CrossRefPubMedGoogle Scholar
  29. UK Prospective 9. Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 352: 854–865, 1998CrossRefGoogle Scholar
  30. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest, 108: 1167–1174, 2001PubMedGoogle Scholar
  31. Prager R, Schernthaner G. Insulin receptor binding to monocytes, insulin secretion, and glucose tolerance following metformin treatment. Results of a double-blind cross-over study in type II diabetics. Diabetes 32: 1083–1086, 1983CrossRefPubMedGoogle Scholar
  32. Prager R, Schernthaner G, Graf H. Effect of metformin on peripheral insulin sensitivity in non insulin dependent diabetes mellitus. Diabete Metab, 12: 346–350, 1986PubMedGoogle Scholar
  33. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 366: 1279–1289, 2005CrossRefPubMedGoogle Scholar
  34. Erdmann E, Dormandy JA, Charbonnel B, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction. Results from the PROactive (PROactive 05) study. J Am Coll Cardiol, 49: 1772–1780, 2007CrossRefPubMedGoogle Scholar
  35. Wilcox R, Bousser M-G, Betteridge J, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke. Stroke, 38: 865–873, 2007CrossRefPubMedGoogle Scholar
  36. Mannucci E, Monami M, Lamanna C, et al. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab, 10: 1221–1238, 2008CrossRefPubMedGoogle Scholar
  37. Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA, 298: 1180–1188, 2007CrossRefPubMedGoogle Scholar
  38. Schernthaner G. Pleiotropic effects of thiazolidinediones on traditional and non-traditional atherosclerotic risk factors. Int J Clin Pract, 63: 912–929, 2009CrossRefPubMedGoogle Scholar
  39. BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med, 360: 2503–2515, 2009CrossRefGoogle Scholar
  40. Tzoulaki I, Molokhia M, Curcin V, et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ, 2010 (in press)Google Scholar
  41. Schernthaner G, Matthews DR, Charbonnel B, et al. Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: a double-blind, randomized trial. J Clin Endocrinol Metab, 89: 6068–6076, 2004CrossRefPubMedGoogle Scholar
  42. Charbonnel BH, Matthews DR, Schernthaner G, et al. A long-term comparison of pioglitazone and gliclazide in patients with type 2 diabetes mellitus: a randomized, double-blind, parallel-group comparison trial. Diabet Med, 22: 399–405, 2005CrossRefPubMedGoogle Scholar
  43. Gamble JM, Simpson SH, Eurich DT, et al. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab, 12: 47–53, 2010CrossRefPubMedGoogle Scholar
  44. Malmberg K, Norhammar A, Wedel H, et al. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction. Long-term results from the diabetes and insulin–glucose infusion in acute myocardial infarction (DIGAMI) study. Circulation, 99: 2626–2632, 1999PubMedGoogle Scholar
  45. Malmberg K, Rydén L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2) effects on mortality and morbidity. Eur Heart J, 26: 650–651, 2005CrossRefPubMedGoogle Scholar
  46. Mellbin LG, Malmberg K, Norhammer A, et al. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J, 29: 166–176, 2008CrossRefPubMedGoogle Scholar
  47. Raz I, Wilson PW, Strojek K, et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care, 32: 381–386, 2009CrossRefPubMedGoogle Scholar
  48. Anselmino M, Ohrvik J, Malmberg K, et al. Glucose lowering treatment in patients with coronary artery disease is prognostically important not only in established but also in newly detected diabetes mellitus: a report from the EuroHeart Survey on Diabetes and the Heart. Eur Heart J, 29: 177–184, 2008CrossRefPubMedGoogle Scholar
  49. Mellbin LG, Malmberg K, Waldenstrom A, et al. Prognostic implications of hypoglycaemic episodes during hospitalisation for myocardial infarction in patients with type 2 diabetes: a report from the DIGAMI 2 trial. Heart, 95: 721–727, 2009CrossRefPubMedGoogle Scholar
  50. Kosiborod M, Inzucchi SE, Goyal A, et al. Relationship between spontaneous and iatrogenic hypoglycaemia and mortality in patients hospitalized with acute myocardial infarction. JAMA, 301: 1556–1564, 2009CrossRefPubMedGoogle Scholar
  51. Goyal A, Mehta SR, Díaz R, et al. Differential clinical outcomes associated with hypoglycemia and hyperglycemia in acute myocardial infarction. Circulation, 120: 2429–2437, 2009CrossRefPubMedGoogle Scholar
  52. Kosiborod M, Rathore SS, Inzucchi SE, et al. Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes. Circulation, 111: 3078–3086, 2005CrossRefPubMedGoogle Scholar
  53. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med, 345: 1359–1367, 2001CrossRefPubMedGoogle Scholar
  54. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med, 354: 449–461, 2006CrossRefPubMedGoogle Scholar
  55. Van den Berghe G, Wilmer A, et al. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes, 55: 3151–3159, 2006CrossRefPubMedGoogle Scholar
  56. The NICE-SUGAR study investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med, 360: 1283–1297, 2009CrossRefGoogle Scholar
  57. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet, 373: 1765–1772, 2009CrossRefPubMedGoogle Scholar
  58. Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia, 52: 2288–2298, 2009CrossRefPubMedGoogle Scholar
  59. Kelly TN, Bazzano LA, Fonseca VA, et al. Systematic review: glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med, 151: 394–403, 2009PubMedGoogle Scholar
  60. Mannucci E, Monami M, Lamanna C, et al. Prevention of cardiovascular disease through glycemic control in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis, 19: 604–612, 2009CrossRefPubMedGoogle Scholar
  61. Kearney PM, Blackwell L; Cholesterol Treatment Trialists' (CTT) Collaborators. Lancet, 371: 117, 2008CrossRefPubMedGoogle Scholar
  62. Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet, 371: 17–25, 2008CrossRefGoogle Scholar
  63. Turnbull F, Neal B, Algert C, et al. Blood pressure lowering treatment trialists' Collaboration. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med, 165: 1410–1419, 2005Google Scholar
  64. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med, 358: 580–591, 2008CrossRefPubMedGoogle Scholar
  65. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med, 348: 383–393, 2003CrossRefPubMedGoogle Scholar
  66. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American diabetes Association and a scientific statement of the American college of cardiology foundation and the American heart association. Circulation, 119: 351–357, 2009CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Medicine IRudolfstiftung Hospital ViennaViennaAustria

Personalised recommendations