Wiener Medizinische Wochenschrift

, Volume 159, Issue 5–6, pp 141–147 | Cite as

Effects of progressive strength training on muscle mass in type 2 diabetes mellitus patients determined by computed tomography

  • Edmund CauzaEmail author
  • Christoph Strehblow
  • Sylvia Metz-Schimmerl
  • Barbara Strasser
  • Ursula Hanusch-Enserer
  • Karam Kostner
  • David Dunstan
  • Peter Fasching
  • Paul Haber


OBJECTIVE: To examine the effect of a 4-month progressive strength training program on muscle and fat mass assessed by computed tomography (CT) in type 2 diabetes mellitus (T2DM) patients, and to assess the relationships of changes in muscle cross-section area (CSA) with glycaemic control. METHODS: Twenty adults (mean age ± SE: 56.4 ± 0.9 a) with T2DM participated in a supervised strength training program for 4 months 3 days/week. Muscle and fat areas of the quadriceps muscle were estimated by CT volumetry before and immediately after the training. Glycaemic (HbA1c) and anthropometric (BMI, skinfolds) measurements were assessed at 0 and 4 months, respectively. RESULTS: After strength training, muscle strength increased significantly in all measured muscle groups. Quadriceps size (CSA of the muscle) was increased by 2.4% (from 7.99 ± 0.3 cm3 to 8.18 ± 0.3 cm3, p = 0.003) for the right extremity, 3.9% (from 8.1 ± 0.4 cm3 to 8.41 ± 0.5 cm3, p = 0.04) for the left side. Fat tissue CSA reduced from 0.66 ± 0.1 cm3 to 0.56 ± 0.12 cm3 for the right leg (15.3% reduction) and from 0.58 ± 0.12 cm3 to 0.37 ± 0.13 cm3 for the left leg (35.8% reduction), resulting in a mean fat CSA reduction of 24.8%. Fat mass assessed by skin folds was significantly reduced and lean body mass was significantly increased. The change in muscle CSA was not correlated with the changes in HbA1c or muscle strength. CONCLUSIONS: Strength training significantly improves both muscle mass and the muscle to fat ratio in T2DM. However, changes in muscle observed with computed tomography were not related to changes observed in HbA1c with training.


Diabetes mellitus Type 2 Computed tomography Strength Training Muscle Mass 

Auswirkung von progressivem Krafttraining auf die Muskelmasse bei Patienten mit Typ-2-Diabetes mellitus: Messung mit der Computertomographie


GRUNDLAGEN: Ziel dieser Untersuchung war es, die Effekte eines 4-monatigen progressiven Krafttrainingprogramms auf die Muskel- und Fettmasse, gemessen mittels Computertomographie, bei Diabetes mellitus Typ-2-Patienten zu bestimmen und die Veränderungen der Muskelquerschnitte auf den Glukosestoffwechsel zu untersuchen. METHODIK: Zwanzig Patienten (mittleres Alter ± SE: 56,4 ± 0,9 a) nahmen an einem supervidierten 4-monatigen Krafttrainingprogramm 3 Tage/Woche teil. Muskel und Fettmasse wurden mittels Computertomographie vor und unmittelbar nach dem Training gemessen. Ebenso wurde der Glukosestoffwechsel (HbA1C), als auch anthropometrische Daten (BMI, Hautfalte), zum Zeitpunkt 0 und nach 4 Monaten erhoben. ERGEBNISSE: Nach dem Krafttraining verbesserte sich die Muskelkraft signifikant in allen gemessenen Muskeln. Der M. quadriceps vergrößerte sich um 2,4 % (von 7,99 ± 0,3 cm3 auf 8,18 ± 0,3 cm3, p = 0,003) in der rechten und um 3,9 % (von 8,1 cm3 ± 0,4 auf 8,41 ± 0,5 cm3, p = 0.04) in der linken unteren Extremität (bestimmt mittels Muskelquerschnittsmessungen). Das Fettgewebe verringerte sich von 0,66 ± 0,1 cm3 auf 0,56 ± 0,12 cm3 im rechten (15,3 % Reduktion) und von 0,58 ± 0,12 cm3 auf 0,37 ± 0,13 cm3 im linken Bein (35,8 % Reduktion), insgesamt fand sich eine Fettquerschnittsreduktion von 24,8 %. Die Fettmasse wurde signifikant reduziert, während die Muskelmasse signifikant zunahm. Es zeigten sich keine signifikanten Korrelationen zwischen Muskelquerschnittvermehrung und Hba1C oder Muskelkraft. SCHLUSSFOLGERUNGEN: Krafttraining verbessert sowohl die Muskelmasse als auch das Verhältnis Muskel zu Fett bei Diabetes mellitus Typ-2-Patienten. Jedoch korrelieren die Veränderungen der Muskelmasse (bestimmt mittels Computertomographie) nach dem Training nicht mit den Veränderungen im HbA1C.


Diabetes mellitus Typ-2 Computertomographie Krafttraining Muskelmasse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. DeFronzo RA, Bonadonna RC, Ferrennini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care, 15: 318–368, 1992PubMedCrossRefGoogle Scholar
  2. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol, 71: 644–650, 1991PubMedGoogle Scholar
  3. Hurley BF. Age, gender and muscular strength. J Geront A Biol Sci Med Sci, 50: 41–44, 1995Google Scholar
  4. Evans WJ. Effects of exercise on body composition and functional capacity of the elderly. J Geront A Biol Sci Med Sci, 50: 147–150, 1995Google Scholar
  5. Brown AB, McCartney N, Sale DG. Positive adaptations to weight-lifting training in the elderly. J Appl Physiol, 69: 1725–1733, 1990PubMedGoogle Scholar
  6. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA, 13(263): 3029–3034, 1990CrossRefGoogle Scholar
  7. Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care, 26: 2977–2982, 2003PubMedCrossRefGoogle Scholar
  8. Miller WJ, Sherman WM, Ivy JL. Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc, 16: 539–543, 1984PubMedGoogle Scholar
  9. Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes, 53: 294–305, 2004PubMedCrossRefGoogle Scholar
  10. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Kostner K, Dunky A, Haber P. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil, 86: 1527–1533, 2005PubMedCrossRefGoogle Scholar
  11. Allen Th, Peng MT, Chen KP, Huang TF, Chang C, Fang HS. Prediction of total adiposity from skinfolds and the curvilinear relationship between external and internal adiposity. Metabolism, 5: 346–352, 1956PubMedGoogle Scholar
  12. Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, Metter EJ, Fozard JL, Fleg JL. Effects of Strength Training in 65- to 75-yr-old Men and Women. J Appl Physiol, 86: 195–201, 1999PubMedGoogle Scholar
  13. O'Hagan FT, Sale DG, MacDougall JD, Garner SH. Response to resistance training in young women and men. Int J Sports Med, 16: 314–321, 1995PubMedCrossRefGoogle Scholar
  14. Grimby G, Saltin B. The ageing muscle. Clin Physiol, 3: 209–218, 1983PubMedCrossRefGoogle Scholar
  15. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84: 275–294, 1988PubMedCrossRefGoogle Scholar
  16. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol, 85: 115–122, 1998PubMedGoogle Scholar
  17. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 51: 7–18, 2002PubMedCrossRefGoogle Scholar
  18. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr, 22: 325–346, 2002PubMedCrossRefGoogle Scholar
  19. Phillips DI, Caddy S, Ilic V, Fielding BA, Frayn KN, Borthwick AC, Taylor R. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism, 45: 947–950, 1996PubMedCrossRefGoogle Scholar
  20. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes, 46: 983–988, 1997PubMedCrossRefGoogle Scholar
  21. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes, 46: 1579–1585, 1997PubMedCrossRefGoogle Scholar
  22. Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S, Lupien PJ, Theriault G, Pinault S, Bouchard C. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes, 38: 304–309, 1989PubMedCrossRefGoogle Scholar
  23. Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol, 81: 2445–2455, 1996PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Edmund Cauza
    • 1
    Email author
  • Christoph Strehblow
    • 2
  • Sylvia Metz-Schimmerl
    • 3
  • Barbara Strasser
    • 4
  • Ursula Hanusch-Enserer
    • 2
  • Karam Kostner
    • 5
  • David Dunstan
    • 6
  • Peter Fasching
    • 2
  • Paul Haber
    • 7
  1. 1.Department of Internal MedicineHerz Jesu HospitalViennaAustria
  2. 2.Department of Internal Medicine V, Department of Diabetes and RheumatologyWilhelminenspitalViennaAustria
  3. 3.Department of RadiologyMedical University of ViennaViennaAustria
  4. 4.Institute for Sports Medicine, Alpine Medicine and Health TourismUniversity of Health Sciences, Medical Informatics and TechnologyHall in TriolAustria
  5. 5.Department of MedicineUniversity of QueenslandBrisbaneAustralia
  6. 6.International Diabetes InstituteMelbourneAustralia
  7. 7.Department of Internal Medicine III, Division of Sports MedicineMedical University of ViennaViennaAustria

Personalised recommendations