An update on the relationship between the kidney, salt and hypertension

  • Gert Mayer


The relationship between salt intake and blood pressure has been noteworthy for a long time. Nevertheless, the complex hemodynamic alterations associated with the salt-induced blood pressure changes have become clear only quite recently. Despite this knowledge, the concept of Guyton, which postulates that any increase in blood pressure should lead to a pressure natriuresis normalising blood pressure over the long term is still valid. As a conclusion, we have to remember that an elevation of arterial pressure can only be maintained if renal function as indicated by pressure natriuresis is impaired.


Hypertension Kidney function Salt 

Niere, Kochsalz und Blutdruck


Seit langer Zeit ist der Zusammenhang zwischen Salzkonsum und Hypertonie bekannt. Die genauen pathophysiologischen Veränderungen, die diesem Verhältnis zu Grunde liegen, wurden allerdings erst kürzlich etwas genauer beschrieben. Trotz dieser neuen Erkenntnisse bleibt die Aussage von Guyton gültig, dass ein erhöhter Blutdruck nur dann bestehen kann, wenn eine der basalen Funktionen der Nieren, die sogenannte Drucknatriurese, gestört ist.


Hypertonie Nierenfunktion Kochsalz 


  1. Manley JJ. Salt and other condiments. London, Clowes, 1884Google Scholar
  2. Eaton B, Konner M. Paleolithic nutrition: a consideration of its nature and current implications. N Engl J Med, 312: 283–289, 1985PubMedGoogle Scholar
  3. Cirillo M, Capasso G, Di Leo VA, De Santo NG. A history of salt. Am J Nephrol, 14: 426–431, 1994PubMedGoogle Scholar
  4. Ruskin A. Classics in arterial hypertension. Charles C Thomas, Springfield Illinois, 1956Google Scholar
  5. DeWardener HE, MacGregor GA. Sodium and blood pressure. Curr Opin Cardiol, 17: 360–367, 2002CrossRefGoogle Scholar
  6. Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress". Am J Human Genet, 18: 3–20, 1962Google Scholar
  7. Weder AB. Evolution and hypertension. Hypertension, 49: 260–265, 2007PubMedCrossRefGoogle Scholar
  8. Gleiberman L. Blood pressure and dietary salt in human populations. Ecol Food Nutr, 1: 143–156, 1973Google Scholar
  9. Guyton AC. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension, 19(S1): S2–S8, 1992Google Scholar
  10. Julius S. Transition from high cardiac output to elevated vascular resistance in hypertension. Am Heart J, 116: 600–606, 1988PubMedCrossRefGoogle Scholar
  11. Blaustein MP, Zhang J, Chen L, Hamilton BP. How does salt retention raise blood pressure? Am J Physiol Integr Comp Physiol, 290: R514–R523, 2006Google Scholar
  12. Blaustein MP. The role of Na-Ca exchange in the regulation of tone in vascular smooth muscle. In: Casteels R, Godfraind T, and Reugg JC. Excitation-contraction coupling in smooth muscle, Elsevier/North Holland Biomedical Press, Amsterdam, pp 101–108, 1977Google Scholar
  13. Gonick HC, Ding Y, Vaziri ND. Simultaneous measurement of marinobufagenin, ouabain and hypertension associated protein in various disease states. Clin Exp Hypertens, 20: 617–627, 1998PubMedGoogle Scholar
  14. Ferrari P, Ferrandi M, Valentini G, Bianchi G. Rostafuroxin: an ouabain antagonist that corrects renal and vascular Na+/K+-ATPase alterations in ouabain and adducing dependent hypertension. Am J Physiol Reg, 290: R529–R535, 2006Google Scholar
  15. Iwamoto T, Kita S, Uchara A, Imanaga I, Matsuda T, Baba A, Ratsuragi T. Molecular determinants of the Na/CA exchange (NCX1) inhibition by SEA0400. J Biol Chem, 279: 7544–7553, 2004PubMedCrossRefGoogle Scholar
  16. Laredo J, Hamilton BP, Hamlyn JM. Secretion of endogenous ouabain from bovine adrenocortical cells: role of the zonal glomerulosa and zona fasciculate. Biochem Biophys Res Commun, 212: 487–493, 1995PubMedCrossRefGoogle Scholar
  17. Manunta P, Hamilton BP, Hamlyn JM. Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol, 290: R553–R559, 2006PubMedGoogle Scholar
  18. Hamlyn JM, Blaustein MP. Sodium chloride, extracellular fluid volume and blood pressure regulation. Am J Physiol Renal Fluid Electrolyte Physiol, 251: F563–F575, 1986Google Scholar
  19. Dahl LK, Heinee M, Thompson K. Genetic influence of renal homografts on the blood pressure of rats from different strains. Proc Soc Exp Biol Med, 140: 852–856, 1972PubMedGoogle Scholar
  20. Guyton AC. Blood pressure control: role of the kidneys and body fluids. Science, 252: 1813–1816, 1991PubMedCrossRefGoogle Scholar
  21. Guyton AC. Physiologic regulation of arterial pressure. Am J Cardiol, 8: 401–407, 1961PubMedCrossRefGoogle Scholar
  22. Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Norman RA. Arterial pressure regulation: overriding dominance of the kidneys in long term regulation and in hypertension. Am J Med, 52: 584–594, 1972PubMedCrossRefGoogle Scholar
  23. McDonough AA, Leong PKK, Yang LE. Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport. Ann N Y Acad Sci, 986: 699–677, 2003CrossRefGoogle Scholar
  24. Zhang YB, Magyar CE, Holsetin-Rathlou NH, McDonough AA. The cytochrome P450 inhibitor cobald chloride prevents inhibition of renal Na+/K+-ATPase and redistribution of apical NHE3 during acute hypertension. J Am Soc Nephrol, 9: 531–537, 1998PubMedGoogle Scholar
  25. Ortiz PA, Hong NJ, Garvin JL. Luminal flow induces eNOS activation and translocation in the rat thick ascending limb. Am J Physiol Renal Physiol, 287: F274–F280, 2004PubMedCrossRefGoogle Scholar
  26. Evans RG, Majid DSA, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol, 32: 400–409, 2005PubMedCrossRefGoogle Scholar
  27. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and cardiovascular risk. BMJ, 298: 564–567, 1989PubMedGoogle Scholar
  28. Yliharsila H, Erikson JG, Forsen T, Kajantie E, Osmond C, Barker DJP. Self perpetuating effects of birth size on blood pressure levels in elderly people. Hypertension, 41: 446–450, 2003PubMedCrossRefGoogle Scholar
  29. Trivers RL. Parent-offspring conflict. Am Zoologist, 14: 249–264, 1974Google Scholar
  30. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med, 348: 101–108, 2003PubMedCrossRefGoogle Scholar
  31. Meneton P, Jeunemaitre X, De Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure and cardiovascular disease. Physiol Rev, 85: 679–715, 2005PubMedCrossRefGoogle Scholar
  32. Coruzzi P, Parati G, Brambilla L, Brambilla V, Gualerzi M, Novarini A, Castiglioni P, DiRienzo M. Effects of salt sensitivity on neural cardiovascular regulation in essential hypertension. Hypertension, 46: 1321–1326, 2005PubMedCrossRefGoogle Scholar
  33. Rodriguez Iturbe B, Romero F, Johnson RJ. Pathophysiological mechanisms of salt dependent hypertension. Am J Kidney Dis, 50: 655–672, 2007PubMedCrossRefGoogle Scholar
  34. Humphreys MH. γMSH, sodium metabolism and salt sensitive hypertension. Am J Physiol Regul Integr Comp Physiol, 286: R417–R430, 2004PubMedGoogle Scholar
  35. Ni XP, Bhargava A, Pearce D, Humphreys MH. Modulation by dietary sodium intake of melanocortin 3 receptor mRNA and protein abundance in the rat kidney. Am J Physiol Regul Integr Comp Physiol, 290: R560–R567, 2006PubMedGoogle Scholar
  36. Johnson RJ, Rideout BA. Uric acid and diet: insights into the epidemic of cardiovascular disease. N Engl J Med, 350: 1071–1073, 2004PubMedCrossRefGoogle Scholar
  37. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure independent mechanism. Am J Physiol Renal Physiol, 282: F991–F997, 2002PubMedGoogle Scholar
  38. Ying WZ, Sanders PW. Dietary salt enhances glomeruläre endothelial nitric oxide synthase through TGF beta. Am J Physiol Renal Physiol, 275: F18–F24, 1998Google Scholar
  39. Vaziri ND, Rodriguez Iturbe B. Oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol, 2: 582–593, 2006PubMedCrossRefGoogle Scholar
  40. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez Iturbe B. Mycophenolate Mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol, 17: S218–S225, 2006PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Division of Nephrology and Hypertensiology, Department of Internal Medicine IVInnsbruckAustria

Personalised recommendations