Advertisement

Wiener Medizinische Wochenschrift

, Volume 158, Issue 17–18, pp 493–502 | Cite as

Stammzellforschung – Status, Ausblick und bioethischer Aspekt

  • Pamina Pflegerl
  • Thomas Keller
  • Brigitte Hantusch
  • Thomas Sören Hoffmann
  • Lukas Kenner
Übersicht

Zusammenfassung

Stammzellen verfügen über einige Eigenschaften, die sie als Hoffnungsträger für die molekulare Medizin ausweisen. Sie haben die Fähigkeit der Selbstregeneration und der Differenzierung in spezialisierte Gewebe. Embryonale Stammzellen (ESZ) haben eine große Potentialität, bergen aber auch ein hohes Tumorrisiko. Die Verwendung von humanen embryonalen Stammzellen (hESZ) ist ethisch problematisch, da ihre Gewinnung die Zerstörung menschlicher Embryonen voraussetzt. Neuere Arbeiten bieten die Möglichkeit einer ethisch unbedenklichen Herstellung von ESZ aus Fibroblasten. Alternativen zu ESZ sind adulte Stammzellen (AS), wie z. B. Stammzellen aus Knochenmark, Fruchtwasser oder Nabelschnurblut. Der vorliegende Artikel basiert auf der Stellungnahme von Lukas Kenner für die öffentliche Anhörung des Bildungs- und Forschungsausschusses des Deutschen Bundestages über den Einsatz von Stammzellen in Forschung, Therapie und Wirkstoffentwicklung. Ethische Aspekte werden gewürdigt.

Schlüsselwörter

Stammzellen Klonen Plastizität Tumorigenität Bioethik 

Stem cells – cloning, plasticity, bioethic

Summary

Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

Keywords

Stem cells Cloning Plasticity Tumors Bioethic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147, 1998PubMedCrossRefGoogle Scholar
  2. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 70: 837–845, 2004PubMedCrossRefGoogle Scholar
  3. Ellerstrom C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H. Derivation of a xeno-free human embryonic stem cell line. Stem Cells, 24: 2170–2176, 2006PubMedCrossRefGoogle Scholar
  4. Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H. Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod, 22: 1231–1238, 2007PubMedCrossRefGoogle Scholar
  5. Narkilahti S, Rajala K, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H. Monitoring and analysis of dynamic growth of human embryonic stem cells: comparison of automated instrumentation and conventional culturing methods. Biomed Eng Online, 6: 11, 2007PubMedCrossRefGoogle Scholar
  6. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol, 21: 319–321, 2003PubMedCrossRefGoogle Scholar
  7. Heng BC, Hong YH, Cao T. Modulating gene expression in stem cells without recombinant DNA and permanent genetic modification. Cell Tissue Res, 321: 147–150, 2005PubMedCrossRefGoogle Scholar
  8. Van Hoof D, Passier R, Ward-Van Oostwaard D, Pinkse MW, Heck AJ, Mummery CL, Krijgsveld J. A quest for human and mouse embryonic stem cell-specific proteins. Mol Cell Proteomics, 5: 1261–1273, 2006PubMedCrossRefGoogle Scholar
  9. Ma L, Sun B, Hood L, Tian Q. Molecular profiling of stem cells. Clin Chim Acta, 378: 24–32, 2007PubMedCrossRefGoogle Scholar
  10. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663–676, 2006PubMedCrossRefGoogle Scholar
  11. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318–324, 2007PubMedCrossRefGoogle Scholar
  12. Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316: 1746–1748, 2007PubMedCrossRefGoogle Scholar
  13. Meissner A, Jaenisch R. Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature, 439: 212–215, 2006PubMedCrossRefGoogle Scholar
  14. Gearhart J, Pashos EE, Prasad MK. (2007) Pluripotency redux – advances in stem-cell research. N Engl J Med, 357: 1469–1472PubMedCrossRefGoogle Scholar
  15. Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Focking M, Kustermann E, Kolossov E, Hescheler J, Hossmann KA, Trapp T. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab, 23: 780–785, 2003PubMedCrossRefGoogle Scholar
  16. Fairchild PJ, Cartland S, Nolan KF, Waldmann H. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol, 25: 465–470, 2004PubMedCrossRefGoogle Scholar
  17. Damjanov I. From stem cells to germ cell tumors and back. Verh Dtsch Ges Pathol, 88: 39–44, 2004PubMedGoogle Scholar
  18. Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA, 72: 3585–3589, 1975PubMedCrossRefGoogle Scholar
  19. Hoshida Y, Aozasa K. Malignancies in organ transplant recipients. Pathol Int, 54: 649–658, 2004PubMedCrossRefGoogle Scholar
  20. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol, 23: 19–20, 2005PubMedCrossRefGoogle Scholar
  21. Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, Reik W, Feil R. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development, 125: 2273–2282, 1998PubMedGoogle Scholar
  22. Olivennes F. Do children born after assisted reproductive technology have a higher incidence of birth defects? Fertil Steril, 84: 1325–1326; discussion 1327, 2005PubMedCrossRefGoogle Scholar
  23. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet, 74: 599–609, 2004PubMedCrossRefGoogle Scholar
  24. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813, 1997PubMedCrossRefGoogle Scholar
  25. Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF, Mountford PS. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol, 10: 989–992, 2000PubMedCrossRefGoogle Scholar
  26. Rhind SM, King TJ, Harkness LM, Bellamy C, Wallace W, DeSousa P, Wilmut I. Cloned lambs – lessons from pathology. Nat Biotechnol, 21: 744–745, 2003PubMedCrossRefGoogle Scholar
  27. Shi W, Zakhartchenko V, Wolf E. Epigenetic reprogramming in mammalian nuclear transfer. Differentiation, 71: 91–113, 2003PubMedCrossRefGoogle Scholar
  28. Wrenzycki C, Herrmann D, Gebert C, Carnwath JW, Niemann H. Gene expression and methylation patterns in cloned embryos. Methods Mol Biol, 348: 285–304, 2006PubMedCrossRefGoogle Scholar
  29. Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet, 39: 295–302, 2007PubMedCrossRefGoogle Scholar
  30. Cyranoski D. Blow follows blow for stem-cell work. Nature, 439: 8, 2006PubMedCrossRefGoogle Scholar
  31. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol, 21: 1200–1207, 2003PubMedCrossRefGoogle Scholar
  32. Rideout WM, 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 109: 17–27, 2002PubMedCrossRefGoogle Scholar
  33. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci, 45: 4251–4255, 2004PubMedCrossRefGoogle Scholar
  34. Mombaerts P. Therapeutic cloning in the mouse. Proc Natl Acad Sci USA, 100 (Suppl 1): 11924–11925, 2003PubMedCrossRefGoogle Scholar
  35. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA, 99: 2344–2349, 2002PubMedCrossRefGoogle Scholar
  36. Nishimura F, Yoshikawa M, Kanda S, Nonaka M, Yokota H, Shiroi A, Nakase H, Hirabayashi H, Ouji Y, Birumachi J, Ishizaka S, Sakaki T. Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells, 21: 171–180, 2003PubMedCrossRefGoogle Scholar
  37. Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia, 47: 499–508, 2004PubMedCrossRefGoogle Scholar
  38. Forschungsgemeinschaft D. Stammzellforschung in Deutschland – Möglichkeiten und Perspektiven. http://www.dfg.de/aktuelles_presse/reden_stellungnahmen/2006/download/stammzellforschung_deutschland_lang_0610.pdf
  39. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol, 166: 1781–1791, 2005PubMedGoogle Scholar
  40. Dihne M, Bernreuther C, Hagel C, Wesche KO, Schachner M. Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells, 24: 1458–1466, 2006PubMedCrossRefGoogle Scholar
  41. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci, 25: 4694–4705, 2005PubMedCrossRefGoogle Scholar
  42. Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci, 23: 9428–9434, 2003PubMedGoogle Scholar
  43. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med, 29: 191–203; discussion 204–196, 2006PubMedGoogle Scholar
  44. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet, 7: 319–327, 2006PubMedCrossRefGoogle Scholar
  45. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 100: 57–70, 2000PubMedCrossRefGoogle Scholar
  46. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif, 38: 245–255, 2005PubMedCrossRefGoogle Scholar
  47. Wilmut I. Human cells from cloned embryos in research and therapy. BMJ, 328: 415–416, 2004PubMedCrossRefGoogle Scholar
  48. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol, 22: 53–54, 2004PubMedCrossRefGoogle Scholar
  49. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435: 646–651, 2005PubMedCrossRefGoogle Scholar
  50. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous human adult stem cell transformation. Cancer Res, 65: 3035–3039, 2005PubMedGoogle Scholar
  51. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 117: 2971–2981, 2004PubMedCrossRefGoogle Scholar
  52. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Aikawa R, Asahara T, Losordo DW. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest, 115: 326–338, 2005PubMedGoogle Scholar
  53. D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 39: 513–522, 2006PubMedCrossRefGoogle Scholar
  54. Tatard VM, D'Ippolito G, Diabira S, Valeyev A, Hackman J, McCarthy M, Bouckenooghe T, Menei P, Montero-Menei CN, Schiller PC. Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone, 40: 360–373, 2007PubMedCrossRefGoogle Scholar
  55. De Coppi P, Bartsch G, Jr., Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25: 100–106, 2007PubMedCrossRefGoogle Scholar
  56. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simoes BP, Foss MC, Squiers E, Burt RK. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA, 297: 1568–1576, 2007PubMedCrossRefGoogle Scholar
  57. Bartunek J, Dimmeler S, Drexler H, Fernandez-Aviles F, Galinanes M, Janssens S, Martin J, Mathur A, Menasche P, Priori S, Strauer B, Tendera M, Wijns W, Zeiher A. The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Heart, J 27: 1338–1340, 2006PubMedCrossRefGoogle Scholar
  58. Appelbaum FR. Hematopoietic-cell transplantation at 50. N Engl J Med, 357: 1472–1475, 2007PubMedCrossRefGoogle Scholar
  59. McGuckin C, Forraz N, Baradez MO, Basford C, Dickinson AM, Navran S, Hartgerink JD. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars) 66: 321–329, 2006Google Scholar
  60. Reinhard T, Bohringer D, Enczmann J, Kogler G, Mayweg S, Wernet P, Sundmacher R. HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol, 36: 42–49, 2003PubMedCrossRefGoogle Scholar
  61. Kogler G, Enczmann J, Rocha V, Gluckman E, Wernet P. High-resolution HLA typing by sequencing for HLA-A, -B, -C, -DR, -DQ in 122 unrelated cord blood/patient pair transplants hardly improves long-term clinical outcome. Bone Marrow Transplant, 36: 1033–1041, 2005PubMedCrossRefGoogle Scholar
  62. Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ, 174: 927–933, 2006PubMedGoogle Scholar
  63. Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, Takagi S, Okano H, Ando K, Hotta T. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation, 113: 701–710, 2006PubMedCrossRefGoogle Scholar
  64. Borlongan CV, Hess DC. New hope for stroke patients: mobilization of endogenous stem cells. CMAJ, 174: 954–955, 2006PubMedGoogle Scholar
  65. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 448: 313–317, 2007PubMedCrossRefGoogle Scholar
  66. NIH. clinical trials. http://clinicaltrials.gov/ct/gui/action/SearchAction; jsessionid=58DBD428BE3A13FC74B5012FFA115A1E? term=stem+cells
  67. Stamm C, Kleine HD, Choi YH, Dunkelmann S, Lauffs JA, Lorenzen B, David A, Liebold A, Nienaber C, Zurakowski D, Freund M, Steinhoff G. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg, 133: 717–725, 2007PubMedCrossRefGoogle Scholar
  68. Hess DC. NXY-059: a hopeful sign in the treatment of stroke. Stroke, 37: 2649–2650, 2006PubMedCrossRefGoogle Scholar
  69. Saccardi R, Mancardi GL, Solari A, Bosi A, Bruzzi P, Di Bartolomeo P, Donelli A, Filippi M, Guerrasio A, Gualandi F, La Nasa G, Murialdo A, Pagliai F, Papineschi F, Scappini B, Marmont AM. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood, 105: 2601–2607, 2005PubMedCrossRefGoogle Scholar
  70. James D, Noggle SA, Swigut T, Brivanlou AH. Contribution of human embryonic stem cells to mouse blastocysts. Dev Biol, 295: 90–102, 2006PubMedCrossRefGoogle Scholar
  71. Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif, 40: 367–380, 2007PubMedCrossRefGoogle Scholar
  72. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M, Wagner EF. The Fos-related antigen Fra-1 is an activator of bone matrix formation. Embo J, 23: 2789–2799, 2004PubMedCrossRefGoogle Scholar
  73. Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 112: 181–192, 2003PubMedCrossRefGoogle Scholar
  74. Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L, Komnenovic V, Scheuch H, Beug H, Wagner EF. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet, 39: 741–749, 2007PubMedCrossRefGoogle Scholar
  75. Kenner L, Hoebertz A, Beil T, Keon N, Karreth F, Eferl R, Scheuch H, Szremska A, Amling M, Schorpp-Kistner M, Angel P, Wagner EF. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 164: 613–623, 2004PubMedCrossRefGoogle Scholar
  76. Meixner A, Karreth F, Kenner L, Wagner EF. JunD regulates lymphocyte proliferation and T helper cell cytokine expression. Embo J, 23: 1325–1335, 2004PubMedCrossRefGoogle Scholar
  77. Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, Bunting KD, Wagner EF, Sonneck K, Valent P, Ihle JN, Beug H. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell, 7: 87–99, 2005PubMedCrossRefGoogle Scholar
  78. Szremska AP, Kenner L, Weisz E, Ott RG, Passegue E, Artwohl M, Freissmuth M, Stoxreiter R, Theussl HC, Parzer SB, Moriggl R, Wagner EF, Sexl V. JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102: 4159–4165, 2003PubMedCrossRefGoogle Scholar
  79. Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, Scheuch H, Angel P, Tschachler E, Wagner EF. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature, 437: 369–375, 2005PubMedCrossRefGoogle Scholar
  80. Zenz R, Scheuch H, Martin P, Frank C, Eferl R, Kenner L, Sibilia M, Wagner EF. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell, 4: 879–889, 2003PubMedCrossRefGoogle Scholar
  81. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol, 167: 723–734, 2004PubMedCrossRefGoogle Scholar
  82. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292: 1389–1394, 2001PubMedCrossRefGoogle Scholar
  83. Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ. Dopaminergic differentiation of human embryonic stem cells. Stem Cells, 22: 925–940, 2004PubMedCrossRefGoogle Scholar
  84. Brustle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RD. In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA, 94: 14809–14814, 1997PubMedCrossRefGoogle Scholar
  85. Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development, 131: 5515–5525, 2004PubMedCrossRefGoogle Scholar
  86. Wernig M, Benninger F, Schmandt T, Rade M, Tucker KL, Bussow H, Beck H, Brustle O. Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci, 24: 5258–5268, 2004PubMedCrossRefGoogle Scholar
  87. Bavister BD, Wolf DP, Brenner CA. Challenges of primate embryonic stem cell research. Cloning Stem Cells, 7: 82–94, 2005PubMedCrossRefGoogle Scholar
  88. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA, 92: 7844–7848, 1995PubMedCrossRefGoogle Scholar
  89. Heng BC, Cao T, Haider HK, Wang DZ, Sim EK, Ng SC. An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res, 315: 291–303, 2004PubMedCrossRefGoogle Scholar
  90. Merlob P, Sapir O, Sulkes J, Fisch B. The prevalence of major congenital malformations during two periods of time, 1986–1994 and 1995–2002 in newborns conceived by assisted reproduction technology. Eur J Med Genet, 48: 5–11, 2005PubMedCrossRefGoogle Scholar
  91. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet, 71: 162–164, 2002PubMedCrossRefGoogle Scholar
  92. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet, 40: 62–64, 2003PubMedCrossRefGoogle Scholar
  93. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet, 361: 309–310, 2003PubMedCrossRefGoogle Scholar
  94. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 12: 1259–1268, 2006PubMedCrossRefGoogle Scholar
  95. Allgemeine Erklärung über Bioethik und Menschenrechte. Wegweiser für die Internationalisierung der Bioethik. UNESCO-Kommission HvdD, 2006Google Scholar
  96. Dürig G. Kommentierung zu Art. 1 Abs. 1. Maunz T, Dürig, G. 1976Google Scholar
  97. Böckenförde E-W. Menschenwürde als normatives Prinzip. Die Grundrechte in der bioethischen Debatte. Juristen-Zeitung: 809–815, 2003Google Scholar
  98. Herdegen M. Die Menschenwürde im Fluß des bioethischen Diskurses. Juristen-Zeitung, 56: 773–779, 2001Google Scholar
  99. Hoffmann TS. Zur Aktualität Kants für die Bioethik. Synthesis Philosophica. 39: 151–163, 2005Google Scholar
  100. Schweidler W, Neumann HA, Brysch E. Höfling, W. Definiert die Rechtsordnung den Menschen? Menschenleben – Menschenwürde. 2003Google Scholar
  101. Janich P. Konstruktivismus und Naturerkenntnis. Auf dem Wege zum Kulturalismus. 1996Google Scholar
  102. Hoffmann TS. Urbesitz versus Enteignung des Leibes. Aspekte zur Klonierung des Menschen aus Sicht praktischer Philosophie. Nutzinger H. 2006Google Scholar
  103. Čović A, Hoffmann TS. Bioethik und kulturelle Pluralität. 2005Google Scholar
  104. Höffe O. Medizin ohne Ethik? Suhrkamp. 2002Google Scholar
  105. Ewig SL. Ethik des Heiles und ärztliches Ethos. Kühnhardt. 2001Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Pamina Pflegerl
    • 1
  • Thomas Keller
    • 1
  • Brigitte Hantusch
    • 1
  • Thomas Sören Hoffmann
    • 3
  • Lukas Kenner
    • 1
    • 2
  1. 1.Klinisches Institut für Pathologie an der Medizinischen Universität in WienAustria
  2. 2.Ludwig Boltzmann Institut für KrebsforschungWienAustria
  3. 3.Institut für Philosophie der Rheinischen Friedrich der Wilhelms-Universität BonnGermany

Personalised recommendations