The benefit of strength training on arterial blood pressure in patients with type 2 diabetes mellitus measured with ambulatory 24-hour blood pressure systems

  • Barbara Strasser
  • Paul Haber
  • Christoph Strehblow
  • Edmund Cauza
Themenschwerpunkt

Summary

BACKGROUND: An ambulatory 24-hour BP-monitoring (ABPM) is of paramount importance, while patients are engaged in their usual activities, for a better representation of blood pressure (BP). ABPM provides not only automated measurements of brachial-artery pressure over a 24-hour period but also a highly reproducible circadian profile. The purpose of this investigation was to evaluate the effect of strength training (ST) on BP in patients with type 2 diabetes mellitus (T2D) and to obtain new and important information on BP profiles over 24-hour by using an ABPM. MATERIAL AND METHODS: We recruited ten patients (mean age: 59.7 ± 7.3) from our Diabetes Department who participated in a 4-month systematic ST program on three non-consecutive days of the week. The ST program consisted of exercises for all major muscle groups. The numbers of sets for each muscle group were systematically increased from 3 at the beginning of the program to 4, 5 and finally 6 sets per week at the end of the program. The ABPM equipment (oscillometric Model Mobil-O-Graph® CE 0434) was applied before and after 4-month training period. Routine HbA1C levels were measured using standard techniques. All subjects took a cycling test to measure maximum oxygen uptake (VO2peak) and maximum workload (Wmax) before and after the training period. Maximal strength was determined by one repetition maximum (1RM) in kp for the bench press, bench pull and leg press exercises, using the Concept 2 Dyno®. RESULTS: Analysis of the pooled daytime and night-time data showed a significant reduction of mean arterial BP (from 93.8 ± 19.2 to 90.6 ± 14.3 mmHg; p > 0.01) after a 4-month ST (−3.4% mmHg). VO2peak (p < 0.05), Wmax (p < 0.05), 1RM for all muscle groups (p < 0.01), lean body mass (p < 0.05) and percent body fat (p < 0.05) improved significantly after a 4-month of ST. HbA1C showed a significant reduction by 14.5% (from 8.3 ± 1.7 to 7.1 ± 0.9%; p < 0.01). CONCLUSION: We found a significant reduction of mean arterial BP after a 4-month ST, measured by the ABPM system. These results demonstrate that ST may not only increase muscle strength but also decrease BP and perhaps the risk of future CVD development.

Keywords

Strength training Diabetes mellitus 2 Hypertension Ambulatory 24-hour blood pressure monitoring HbA1C 

Der Effekt von Krafttraining auf den arteriellen Blutdruck bei PatientInnen mit Diabetes mellitus 2, gemessen mit einem ambulanten 24-Stunden Blutdruckmesssystem

Zusammenfassung

HINTERGRUND: Um detaillierte Informationen über das Blutdruckprofil von PatientInnen während ihrer Tagesaktivitäten zu erhalten, gewann der Einsatz eines ambulanten 24-Stunden Blutdruckmesssystems an Bedeutung. Das Ziel unserer Studie war es, den Effekt eines regelmäßigen Krafttrainings auf das 24-Stunden Blutdruckverhalten bei PatientInnen mit Diabetes mellitus 2 zu analysieren und neue Informationen über das Tages- und Nachtprofil, gemessen mit einem ambulanten 24-Stunden Blutdruckmesssystem, zu gewinnen. METHODE: Wir rekrutierten 10 PatientInnen (mittleres Alter: 59.7 ± 7.3) über unsere Diabetesabteilung, die an einem 4 Monate dauernden Krafttrainingsprogramm an 3 nicht aufeinander folgenden Tagen pro Woche teilnahmen. Das Trainingsprogramm inkludierte Übungen für alle großen Muskelgruppen. Die Anzahl der Sätze pro Muskelgruppe pro Woche (S/MG/W) wurde systematisch erhöht, von 3 S/MG/W zu Beginn auf 4, 5 und 6 S/MG/W am Ende der Trainingsperiode. Das 24-Stunden Blutdruckprofil (oscillometric Model Mobil-O-Graph® CE 0434), der HbA1C, die maximale Sauerstoffaufnahme (VO2peak) und Wattleistung (Wmax) – gemessen mit einer Belastungsergometrie am Fahrrad, und das Einwiederholungsmaximum (1RM) – gemessen mit einer Dynamometrie (Concept 2 Dyno®) für die Übungen Bankdrücken, Bankziehen und Beinpresse, wurden vor und nach der Trainingsphase erhoben. ERGEBNISSE: Krafttraining über 4 Monate resultierte in einer signifikanten Reduktion (−3.4 % mmHg) des mittleren arteriellen Blutdrucks (von 93.8 ± 19.2 auf 90.6 ± 14.3 mmHg; p < 0.01). VO2peak (p < 0.05) Wmax (p < 0.05), 1RM für alle Muskelgruppen (p < 0.01), körperfettfreie Magermasse (p < 0.05) und der prozentuelle Körperfettanteil (p < 0.05) zeigten eine signifikante Verbesserung. Der HbA1C reduzierte sich signifikant um 14.5 % (von 8.3 ± 1.7 auf 7.1 ± 0.9 %; p < 0.01). SCHLUSSFOLGERUNG: Diese Studie zeigt, dass Krafttraining nicht nur die Muskelkraft verbessert, sondern auch den Blutdruck und möglicherweise das Risiko für spätere kardiovaskuläre Erkrankungen reduziert.

Schlüsselwörter

Krafttraining Diabetes mellitus 2 Hypertonie Ambulantes 24-Stunden Blutdruckmonitoring HbA1C 

References

  1. American Diabetes Association. Clinical practice recommendations Diabetes Care, 22 (Suppl): 49–53, 1999Google Scholar
  2. Young JC. Exercise prescription for individuals with metabolic disorders. Practical considerations. Sports Medicine, 19: 43–54, 1995PubMedCrossRefGoogle Scholar
  3. Devlin JT, Horton ES. Effects of a prior high-intensity exercise on glucose metabolism in normal and insulin resistant men. Diabetes, 34: 973–979, 1985PubMedCrossRefGoogle Scholar
  4. Fritz T, Rosenquist U. Walking for exercise-immediate effect on blood glucose levels in type 2 diabetes. Scand J Prim Health Care, 19: 31–33, 2001PubMedGoogle Scholar
  5. Carroll S, Dudfield M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med, 34(6): 371–418, 2004PubMedCrossRefGoogle Scholar
  6. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med, 31(15): 1033–1062, 2001PubMedCrossRefGoogle Scholar
  7. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Samsa GP, Otros JD, Kulkami KR, Slentz CA. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med, 347: 1483–1492, 2002PubMedCrossRefGoogle Scholar
  8. Prong NP. Short term effects of exercise on plasma lipids and lipoprotein in humans. Sports Medicine, 16: 431–448, 2003CrossRefGoogle Scholar
  9. Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr, 74(5): 579–584, 2001PubMedGoogle Scholar
  10. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss researching using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord, 21(10): 941–947, 1997PubMedCrossRefGoogle Scholar
  11. Segal KR, Edano A, Abalos A, Albu J, Blando L, Tomas MB, Pi-Sunyer FX. Effects of exercise training on insulin sensitivity and glucose metabolism in lean, obese and diabetic men. J Appl Physiol, 71: 2402–2411, 1991PubMedGoogle Scholar
  12. Hagberg JM Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. Sports Med, 30(3): 193–206, 2000PubMedCrossRefGoogle Scholar
  13. Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analysis of randomised controlled trials. Prev Cardiol, 4: 73–80, 2001PubMedCrossRefGoogle Scholar
  14. Pescatello LS, Franklin BA, Fagard R, Kelly GA, Ray CA. American college of sports medicine position stand. Exercise and hypertension. Med Sci Sports Exerc, 36: 533–553, 2004PubMedCrossRefGoogle Scholar
  15. Wallace JP. Exercise in Hypertension: a clinical review. Sports Medicine 33(8): 585–598, 2003PubMedCrossRefGoogle Scholar
  16. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized controlled trials. Ann Intern Med, 136: 493–503, 2002PubMedGoogle Scholar
  17. Fagard RH. Physical exercise and coronary artery diseases. Acta Cardiol, 57: 91–100, 2002PubMedCrossRefGoogle Scholar
  18. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil, 14(1): 12–17, 2007PubMedCrossRefGoogle Scholar
  19. Padilla J, Wallace JP, Park S. Accumulation of physical activity reduces blood pressure in pre- and hypertension. Med Sci Sports Exerc, 37: 1264–1275, 2005PubMedCrossRefGoogle Scholar
  20. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, Stamler J. Blood pressure, stroke, and coronary heart disease. 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet, 335: 765–774, 1990PubMedCrossRefGoogle Scholar
  21. Vasan RS, Larson MG, Leip EP, Evans JC, Kannel WB, O'Donnel CJ, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med, 345: 1291–1297, 2001PubMedCrossRefGoogle Scholar
  22. Lewington S, Clarke R, Collins R, Peto R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 360: 1903–1913, 2002PubMedCrossRefGoogle Scholar
  23. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Kostner K, Dunky A, Haber P. The relative benefits of endurance and strength training on metabolic factors and muscle function of people with type 2 diabetes mellitus. Archives of Physical Medicine and Rehabilitation, 86: 1527–1533, 2005PubMedCrossRefGoogle Scholar
  24. Schneider SH, Khachadurian AV, Amorosa LF, Clemow L, Ruderman NB. Ten year experience with an exercise-based outpatient life-style modification program in the treatment of diabetes mellitus. Diabetes Care, 15: 1800–1810, 1992PubMedCrossRefGoogle Scholar
  25. Cononie CC, Graves JE, Pollock ML. Effect of exercise training on blood pressure in 70–79-yr-old men and women. Med Sci Sports Exerc, 23: 505–511, 1991PubMedGoogle Scholar
  26. Kokkinos PF, Narayan P, Colleran JA, Pittaras A, Notargiacomo A, Reda D, Papademetriou V. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med, 333: 462–1467, 1995CrossRefGoogle Scholar
  27. Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The fifth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med, 153: 54–183, 1993Google Scholar
  28. Dunstan DW, Puddey IB, Beilin LJ, Burke V, Morton AR, Stanton KG. Effects of a short-term circuit weight training program on glycaemic control in NIDDM. Diabetes Res Clin Pract, 40: 53–61, 1998PubMedCrossRefGoogle Scholar
  29. Eriksson J, Taimela S, Eriksson K, Parviaianen S, Peltonen J, Kujala U. Resistance training in the treatment of non-insulin-dependent diabetes mellitus. Int J Sports Med, 18: 242–246, 1997PubMedCrossRefGoogle Scholar
  30. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, Roubenoft R, Tucker KL, Nelson ME. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care, 25: 2335–2341, 2002PubMedCrossRefGoogle Scholar
  31. Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J, Zimmet P. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care, 25: 729–736, 2002Google Scholar
  32. Verdecchia P. Reference values for ambulatory blood pressure and self-measured blood pressure based on prospective outcome data. Blood Press Monit, 6: 323–327, 2001PubMedCrossRefGoogle Scholar
  33. Stewart KJ. Role of exercise training on cardiovascular disease in persons who have type 2 diabetes and hypertension. Cardiol Clin, 22(4): 569–586, 2004PubMedCrossRefGoogle Scholar
  34. Snow V, Weiss KB, Mottur-Pilson C. The evidence base for tight blood pressure control in the management of type 2 diabetes mellitus. Ann Intern Med 138: 587–592, 2003PubMedGoogle Scholar
  35. Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens, 23: 251–259, 2005PubMedCrossRefGoogle Scholar
  36. Clement DL, De Buyzere ML, De Bacquer DA, De Leeuw PW, Duprez DA, Fagard RH, Braun JJ, Six RO, O'Briene. Prognostic value of ambulatory blood pressure recordings in patients with treated hypertension. NEJM, 348(24): 2407–2415, 2003PubMedCrossRefGoogle Scholar
  37. Balducci S, Fallucca F, Leonetti F, Di Mario U. Is a long term aerobic plus resistance training program feasible for and effective on metabolic profile in type 2 diabetes? Diabetes Care, 27: 841–842, 2004PubMedCrossRefGoogle Scholar
  38. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension, 35: 838–843, 2000PubMedGoogle Scholar
  39. Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA, Roccella EJ, Stout R, Vallbona C, Winston MC, Karimbakas J. Primary prevention of hypertension: clinical and public health advisory from the National High Blood Pressure Education Program. JAMA, 299: 1882–1888, 2002CrossRefGoogle Scholar
  40. Harris KA, Holly RG. Physiological response to circuit weight training in borderline hypertensive subjects. Med Sci Sports Exerc, 19: 246–252, 1987PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Barbara Strasser
    • 1
  • Paul Haber
    • 1
  • Christoph Strehblow
    • 2
  • Edmund Cauza
    • 2
  1. 1.Division of Sports Medicine, Departments of Internal Medicine IIMedical UniversityViennaAustria
  2. 2.Departments of Internal Medicine V and Diabetes and RheumatologyWilhelminenspitalViennaAustria

Personalised recommendations