Wiener Medizinische Wochenschrift

, Volume 158, Issue 1–2, pp 2–12 | Cite as

Genetics of autoimmune diabetes mellitus

  • Marie ČernáEmail author


Autoimmune diabetes mellitus, called type 1 diabetes mellitus (T1DM), is caused by autoimmune destruction of islet beta cells in the pancreas. T1DM susceptibility loci mapped by different genome screening are IDDM1-IDDM18. It has been estimated that HLA (IDDM1) provides up to 40–50 % of the familial clustering of T1DM (LOD score of 65.8). Many studies have verified that DQB1*0302 is a strong susceptibility gene and that the heterozygous combination of DQA1*0301-DQB1*0302 on the HLA-DR4 haplotype and DQA1*0501-DQB1*0201 on the HLA-DR3 haplotype results in a synergistically increased risk of T1DM. The presence of predisposing genes in autoimmune diabetes decreases with age, probably due to increasing influence of environmental factors. Autoimmune diabetes with manifestation in adults may have partly different immunogenetic etiopathogenesis than autoimmune diabetes with manifestation in childhood. Compared to fast progressing adult-onset T1DM, slowly progressing adult-onset type 1 diabetes (LADA) might involve genes leading to a slow progressive β-cells destruction.


Type 1 diabetes mellitus LADA IDDM HLA Autoantibodies 

Genetik des autoimmunen Diabetes mellitus


Der autoimmune Diabetes mellitus, auch Typ 1 Diabetes mellitus (T1DM) genannt, wird durch die autoimmune Zerstörung der Beta-Zellen in den Langerhanschen Inseln des Pankreas hervorgerufen. Mittels verschiedener genomischer Screenings wurden IDDM1-IDDM18 als T1DM-Suszeptibilitäts-Loci identifiziert. Es wurde geschätzt, dass HLA (IDDM1) für bis zu 40–50 % der familiären Häufung verantwortlich ist. In einer Vielzahl von Studien konnte bestätigt werden, dass DQB1*0302 ein starkes Suszeptibilitäts-Gen ist, und dass die heterozygote Kombination von DQA1*0301-DQB1*0302 beim HLA-DR4 Haplotypus und DQA1*5001-DQB1*0201 beim HLA-DR3 Haplotyp in einem synergistisch erhöhten Risiko für den T1DM resultiert. Der Einfluss von prädisponierenden Genen beim autoimmunen Diabetes mellitus nimmt mit dem Alter ab, wahrscheinlich aufgrund der steigenden Bedeutung von Umweltfaktoren. Der autoimmune Diabetes, der sich im Erwachsenenalter manifestiert, hat gegenüber dem autoimmunen Diabetes des Kindesalters eine teilweise unterschiedliche immunogenetische Ätiophatogenese. Neben dem rasch fortschreitenden T1DM mit Manifestation im Erwachsenenalter wird auch ein sich langsam entwickelnde Typ 1 Diabetes (LADA) unterschieden. Bei dieser Form dürften die beteiligten Gene zu einer nur langsam progressiven Beta-Zell-Destruktion führen.


Typ1 Diabetes mellitus LADA Insulin- abhängiger Diabetes mellitus HLA- System Autoantikörper 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Rose NR, Bona C (1993) Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today 14: 426–430PubMedCrossRefGoogle Scholar
  2. Roningen KS, Keiding N, Green A & the EURODIAB ACE Study Group (2001) Correlations between the incidence of childhood-onset type I diabetes in Europe and HLA genotypes. Diabetologia 44(Suppl 3): B51–B59CrossRefGoogle Scholar
  3. van Someren H, Westerveld A, Hagemeijer A, Mees JR, Meera KP, Zaalberg OB (1974) Human antigen and enzyme markers in man-Chinese hamster somatic cell hybrids: evidence for synteny between the HL-A, PGM3, ME1, and IPO-B loci. Proc Natl Acad Sci USA 71: 962–965PubMedCrossRefGoogle Scholar
  4. Lamm LU, Friedrich U, Petersen CB, Jorgensen J, Nielsen J, Therkelsen AJ, Kissmeyer-Nielsen F (1974) Assignment of the major histocompatibility complex to chromosome No. 6 in a family with a pericentric inversion. Hum Hered 24: 273–284PubMedGoogle Scholar
  5. Mungall AJ, Palmer SA, Sims SK et al (2003) The DNA sequence and analysis of human chromosome 6. Nature 425: 805–811PubMedCrossRefGoogle Scholar
  6. Trowsdale J, Campbell RD (1988) Physical map of the human HLA region. Immunol Today 9: 34–35CrossRefGoogle Scholar
  7. Hardy DA, Bell JI, Long EO, Lindsten T, McDevitt HO (1986) Mapping of the class II region of the human major histocompatibility complex by pulsed-field gel electrophoresis. Nature 323: 453–455PubMedCrossRefGoogle Scholar
  8. Todd JA, Bain SC (1992) A practical approach to identification of susceptibility genes for IDDM. Diabetes 41: 1029–1034PubMedCrossRefGoogle Scholar
  9. Todd JA, Farrall M (1996) Panning for gold: genome-wide scanning for linkage in type 1 diabetes. Hum Mol Genet 5: 1443–1448PubMedGoogle Scholar
  10. Owerbach D, Gabbay KH (1996) The search for IDDM susceptibility genes. The next generation. Diabetes 45: 544–551PubMedCrossRefGoogle Scholar
  11. Sanjeevi CB, Landin-Olsson M, Kockum I, Lernmark A (1995) Several residues in the DQA1 and DQB1 chain are either positively or negatively associated with insulin-dependent diabetes mellitus. Diabetes 44: S1–S241CrossRefGoogle Scholar
  12. Kockum I, Wassmuth R, Holmberg E, Michelsen B, Lernmark A (1993) HLA-DQ primarily confers protection and HLA-DR susceptibility in type I (insulin-dependent) diabetes studied in population-based affected families and controls. Am J Hum Genet 53: 150–167PubMedGoogle Scholar
  13. Pugliese A, Gianani R, Moromisato R, Awdeh ZL, Alper CA, Erlich HA, Jackson RA, Eisenbarth GS (1995) HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM. Diabetes 44: 608–613PubMedCrossRefGoogle Scholar
  14. Sanjeevi CB, Falorni A, Kockum I, Hagopian WA, Lernmark A (1996) HLA and glutamic acid decarboxylase in human insulin-dependent diabetes mellitus. Diabet Med 13: 209–217PubMedCrossRefGoogle Scholar
  15. Roningen KS, Spurkland A, Tait BD, Drummond B, Lopez-Larra B, Baranda FS (1991) HLA class II associationd in insulin dependent diabetes mellitus among Blacks, Caucasoids and Japanese. In: HLA 1991 – Proceedings of the 11th International Histocompatibility workshop and conference. Oxford University PressGoogle Scholar
  16. Sanjeevi CB, Lybrand TP, Landin-Olsson M, Kockum I, Dahlquist G, Hagopian WA, Palmer JP, Lernmark A (1994) Analysis of antibody markers, DRB1, DRB5, DQA1 and DQB1 genes and modeling of DR2 molecules in DR2-positive patients with insulin-dependent diabetes mellitus. Tissue Antigens 44: 110–119PubMedGoogle Scholar
  17. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279: 1737–1740PubMedCrossRefGoogle Scholar
  18. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727–729PubMedCrossRefGoogle Scholar
  19. Fodil N, Laloux L, Wanner V, Pellet P, Hauptmann G, Mizuki N, Inoko H, Spies T, Theodorou I, Bahram S (1996) Allelic repertoire of the human MHC class I MICA gene. Immunogenetics 44: 351–357PubMedCrossRefGoogle Scholar
  20. Ota M, Katsuyama Y, Mizuki N, Ando H, Furihata K, Ono S, Pivetti-Pezzi P, Tabbara KF, Palimeris GD, Nikbin B, Davatchi F, Chams H, Geng Z, Bahram S, Inoko H (1997) Trinucleotide repeat polymorphism within exon 5 of the MICA gene (MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens 49: 448–454PubMedGoogle Scholar
  21. Perez-Rodriguez M, Corell A, Arguello JR, Cox ST, McWhinnie A, Marsh SG, Madrigal JA (2000) A new MICA allele with ten alanine residues in the exon 5 microsatellite. Tissue Antigens 55: 162–165PubMedCrossRefGoogle Scholar
  22. Gambelunghe G, Ghaderi M, Cosentino A, Falorni A, Brunetti P, Falorni A, Sanjeevi CB (2000) Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetologia 43: 507–514PubMedCrossRefGoogle Scholar
  23. Gupta M, Nikitina-Zake L, Zarghami M, Landin-Olsson M, Kockum I, Lernmark A, Sanjeevi CB (2003) Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Hum Immunol 64: 553–561PubMedCrossRefGoogle Scholar
  24. Gambelunghe G, Ghaderi M, Tortoioli C, Falorni A, Santeusanio F, Brunetti P, Sanjeevi CB, Falorni A (2001) Two distinct MICA gene markers discriminate major autoimmune diabetes types. J Clin Endocrinol Metab 86: 3754–3760PubMedCrossRefGoogle Scholar
  25. Male D, Brostoff J, Roth D, Roitt I (2006) Immunology (7th ed). Mosby, an imprint of Elsevier Science LimitedGoogle Scholar
  26. van Ham M, van Lith M, Griekspoor A, Neefjes J (2000) What to do with HLA-DO? Immunogenetics 51: 765–770PubMedCrossRefGoogle Scholar
  27. Nepom GT, Kwok WW (1998) Molecular basis for HLA-DQ associations with IDDM. Diabetes 47: 1177–1184PubMedCrossRefGoogle Scholar
  28. Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 268: 1185–1188PubMedCrossRefGoogle Scholar
  29. Ettinger RA, Nepom GT (2000) Molecular aspects of HLA class II αβ heterodimers associated with IDDM susceptibility and protection. Rev Immunogenet 2: 88–94PubMedGoogle Scholar
  30. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SCL, Jenkins SC, Palmer SM, Balfour KM, Rowe BR, Farrall M, Barnett AH, Bain SC, Todd JA (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371: 130–136PubMedCrossRefGoogle Scholar
  31. Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR, Cox NJ, Bell GI, Risch N, Spielman RS (1998) A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet 19: 292–296PubMedCrossRefGoogle Scholar
  32. Mein CA, Esposito L, Dunn MG, Johnson GCL, Timms AE, Goy JV, Smith AN, Sebag-Montefiore L, Merriman ME, Wilson AJ, Pritchard LE, Cucca F, Barnett AH, Bain SC, Todd JA (1998) A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 19: 297–300PubMedCrossRefGoogle Scholar
  33. Cox NJ, Wapelhorst B, Morrison VA, Johnson L, Pinchuk L, Spielman RS, Todd JA, Concannon P (2001) Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 69: 820–830PubMedCrossRefGoogle Scholar
  34. European Consortium for IDDM genome Studies (2001) A genome-wide scan for type 1 diabetes susceptibility genes in Scandinavian families. Identification of new loci with evidence of interaction. Am J Hum Genet 69: 1301–1313CrossRefGoogle Scholar
  35. Pociot F, McDermott MF (2002) Genetics of type 1 diabetes mellitus. Genes Immun 3: 235–249PubMedCrossRefGoogle Scholar
  36. Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33: 176–183PubMedCrossRefGoogle Scholar
  37. Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE, Merriman ME, Kawaguchi Y, Dronsfield MJ, Pociot F (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9: 284–292PubMedCrossRefGoogle Scholar
  38. Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, McKinney PA, Barnett AH, Bain SC, Todd JA (1996) IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmun 9: 415–421PubMedCrossRefGoogle Scholar
  39. Bell GI, Selby MJ, Rutter WJ (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35PubMedCrossRefGoogle Scholar
  40. Moore GE, Abu-Amero SN, Bell G, Wakeling EL, Kingsnorth A, Stanier P, Jauniaux E, Bennett ST (2001) Evidence that insulin is imprinted in the human yolk sac. Diabetes 50: 199–203PubMedCrossRefGoogle Scholar
  41. Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15: 293–297PubMedCrossRefGoogle Scholar
  42. Nistico L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 5: 1075–1080PubMedCrossRefGoogle Scholar
  43. van der Auwera BJ, Vandewalle CL, Schuit FC, Winnock F, De Leeuw IH, Van Imschoot S, Lamberigts G, Gorus FK (1997) CTLA-4 gene polymorphism confers susceptibility to insulin-dependent diabetes mellitus (IDDM) independently from age and from other genetic or immune disease markers. The Belgian Diabetes Registry. Clin Exp Immunol 110: 98–103PubMedCrossRefGoogle Scholar
  44. Marron MP, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, Martinez Larrad MT, Teng WP, Park Y, Zhang ZX, Goldstein DR, Tao YW, Beaurain G, Bach JF, Huang HS, Luo DF, Zeidler A, Rotter JI, Yang MC, Modilevsky T, Maclaren NK, She JX (1997) Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet 6: 1275–1282PubMedCrossRefGoogle Scholar
  45. Donner H, Rau H, Walfish PG, Braun J, Siegmund T, Finke R, Herwig J, Usadel KH, Badenhoop K (1997) CTLA4 alanine-17 confers genetic susceptibility to Graves' disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 82: 143–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Biology, Third Faculty of MedicineCharles UniversityPrahaCzech Republic

Personalised recommendations