Wiener Medizinische Wochenschrift

, Volume 156, Issue 5–6, pp 162–167 | Cite as

Genetics of Osteoporosis

  • Barbara Obermayer-PietschEmail author
Invited Review


Osteoporosis is a systemic skeletal disease comprising rarefaction of bone structure and loss of bone mass, finally leading to increased fracture risk. As a part of its multifactorial aetiology, twin and family studies have demonstrated an important genetic component of osteoporosis regarding many parameters of bone properties e. g. bone mineral density, with a heredity of 60–80 %. Whole genome screens, linkage analysis and candidate gene research have contributed to our current knowledge about genetic loci in osteoporosis. Genotyping of collagen alpha I, lactose intolerance or estrogen receptor alpha alleles are under investigation for their importance in individual and epidemiological practice, e. g. the European Union "GENOMOS" project with more than 50.000 subjects. In future, improved genotyping methods and design strategies as well as large scale epidemiological studies in the general population will bring the genetics of complex diseases such as osteoporosis to a point of success comparable to where mendelian genetics now firmly resides. Given the potential of these new techniques, a paradigm shift may occur both in diagnosis and prevention as well as in individualized treatment aspects of osteoporosis.


Osteoporosis Bone Genetics Polymorphisms Complex diseases 

Genetik der Osteoporose


Osteoporose ist charakterisiert durch eine Abnahme der Knochenmasse, -funktion und -architektur, die zu einer erhöhten Knochenfrakturgefährdung führt. Obwohl die Erkrankung multifaktoriell bedingt ist, wird u.a. die Knochendichte, als klassischer Surrogatparameter für das Osteoporoserisiko, zu 60–80 % genetisch determiniert. Neben Zwillings- und Familienstudien gibt es "Whole-Genome"-Screens, die Genorte für die Osteoporose aufspüren können. Kandidatengene des Knochenstoffwechsels, wie der Collagen-TypI-alpha1-Locus, Lactoseintoleranz- oder Östrogenrezeptor-Gen sind Teil eines Spektrums von genetischen Charakteristika, die nun in großen epidemiologischen Untersuchungen wie etwa dem "GENOMOS"-Projekt der EU mit über 50.000 Probanden hinsichtlich Osteoporose-Risikoprädiktion und möglicher pharmakogenetischer Bedeutung getestet werden. Mit dem vertieften Wissen um genetische Determinanten des Knochenstoffwechsels sind populationsspezifische genetische Risikoprofile für Osteoporose denkbar, die auch Umweltfaktoren und ihre Interaktion mit den genetischen Gegebenheiten einschließen. Mit den neuen Möglichkeiten genetischer Analysen sollten daher sowohl die Diagnostik als auch neue, besser angepassten Präventions- und Therapiestrategien bei Osteoporose möglich sein.


Osteoporose Knochen Genetik Polymorphismus Komplexe Erkrankungen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52(11): 2800–2008PubMedGoogle Scholar
  2. Seeman E, Hopper JL, Bach LA, Cooper ME, Parkinson E, McKay J, Jerums G (1989) Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 320(9): 554–558PubMedCrossRefGoogle Scholar
  3. Jones G, Nguyen TV (2000) Associations between maternal peak bone mass and bone mass in prepubertal male and female children. J Bone Miner Res 15(10): 1998–2004PubMedCrossRefGoogle Scholar
  4. Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11(4): 530–534PubMedGoogle Scholar
  5. Albagha OM, Pettersson U, Stewart A, McGuigan FE, MacDonald HM, Reid DM, Ralston SH (2005) Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 42(3): 240–246PubMedCrossRefGoogle Scholar
  6. Mitchell BD, Cole SA, Bauer RL, Iturria SJ, Rodriguez EA, Blangero J, MacCluer JW, Hixson JE (2000) Genes influencing variation in serum osteocalcin concentrations are linked to markers on chromosomes 16q and 20q. J Clin Endocrinol Metab 85(4): 1362–1366PubMedCrossRefGoogle Scholar
  7. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12(12): 2076–2081PubMedCrossRefGoogle Scholar
  8. Reed T, Dick DM (2003) Heritability and validity of healthy physical aging (wellness) in elderly male twins. Twin Res 6(3): 227–234PubMedCrossRefGoogle Scholar
  9. Towne B, Czerwinski SA, Demerath EW, Blangero J, Roche AF, Siervogel RM (2005) Heritability of age at menarche in girls from the Fels Longitudinal Study. Am J Phys Anthropol 128(1): 210–219PubMedCrossRefGoogle Scholar
  10. Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA (2005) Heritability of age at natural menopause in the Framingham Heart Study. Obstet Gynecol Surv 60(10): 656–657CrossRefGoogle Scholar
  11. Krall EA, Dawson-Hughes B (1993) Heritable and lifestyle determinants of bone mineral density. J Bone Miner Res 8(1): 1–9PubMedCrossRefGoogle Scholar
  12. Andrew T, Antioniades L, Scurrah KJ, Macgregor AJ, Spector TD (2005) Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J Bone Miner Res 20(1): 67–74PubMedCrossRefGoogle Scholar
  13. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, Langdahl B, van Meurs JB, Mosekilde L, Scollen S, Albagha OM, Bustamante M, Carey AH, Dunning AM, Enjuanes A, van Leeuwen JP, Mavilia C, Masi L, McGuigan FE, Nogues X, Pols HA, Reid DM, Schuit SC, Sherlock RE, Uitterlinden AG; GENOMOS Study (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292(17): 2105–2114PubMedCrossRefGoogle Scholar
  14. Morrison NA, Qi JC, Tokita A, et al (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367: 284–287PubMedCrossRefGoogle Scholar
  15. Uitterlinden AG, Ralston SH, Brandi ML, Balcells S, Carey A, Langdahl B, Lips P, Lorenc R, Obermayer-Pietsch B, Reeve J, Reid DM, Basetti A, Bustamante M, Husted LB, Diez-Perez A, Dobnig H, Dunning A, Fahrleitner-Pammer A, Fang Y, Karczmarewicz E, Kruk M, van Leeuwen J, Mavilia C, van Meurs JBJ, Mangion J, McGuigan F, Mellibovsky L, del Monte F, Pols HAP, Renner W, Rivadeneira F, van Schoor N, Scollen S, Sherlock R, Ioannidis J (2005) Large-scale analysis of association between common vitamin D receptor gene variations and osteoporosis: The GENOMOS Study. J Bone Miner Res, in pressGoogle Scholar
  16. Abrams SA, Griffin IJ, Hawthorne KM, Chen Z, Gunn SK, Wilde M, Darlington G, Shypailo RJ, Ellis KJ (2005) Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J Bone Miner Res 20(6): 945–953PubMedCrossRefGoogle Scholar
  17. Obermayer-Pietsch BM, Lange U, Tauber G, Fruhauf G, Fahrleitner A, Dobnig H, Hermann J, Aglas F, Teichmann J, Neeck G, Leb G (2003) Vitamin D receptor initiation codon polymorphism, bone density and inflammatory activity of patients with ankylosing spondylitis. Osteoporos Int 14(12): 995–1000PubMedCrossRefGoogle Scholar
  18. Dawson-Hughes B, Harris SS, Finneran S (1995) Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab 80(12): 3657–3661PubMedCrossRefGoogle Scholar
  19. Kurabayashi T, Tomita M, Matsushita H, Yahata T, Honda A, Takakuwa K, Tanaka K (1999) Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am J Obstet Gynecol 180(5): 1115–1120PubMedCrossRefGoogle Scholar
  20. Palomba S, Orio F Jr, Russo T, Falbo A, Tolino A, Manguso F, Nunziata V, Mastrantonio P, Lombardi G, Zullo F (2005) BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporos Int 16(8): 943–952PubMedCrossRefGoogle Scholar
  21. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FE, Grant SF, Hofman A, van Leeuwen JP, Pols HA, Ralston SH (1998) Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338(15): 1016–1021PubMedCrossRefGoogle Scholar
  22. Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, Aspden RM, Ralston SH (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107(7): 899–907PubMedCrossRefGoogle Scholar
  23. Mann V, Ralston SH (2003) Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 32(6): 711–717PubMedCrossRefGoogle Scholar
  24. Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl B, Lips P, Lorenc R, Obermayer-Pietsch B, Scollen S, Bustamante M, Husted LB, Carey A, Diez-Perez A, Dunning AM, Falchetti A, Karczmarewicz E, Kruk M, van Leeuwen J, van Meurs JBJ, Mangion J, McGuigan F, Mellibovsky L, del Monte F, Pols HAP, Reeve J, Reid DM, Renner W, Rivadeneira F, van Schoor N, Sherlock R, Ioannidis J, for the GENOMOS Study (2005) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: The GENOMOS Study. JAMA, in pressGoogle Scholar
  25. Riancho JA, Zarrabeitia MT, Valero C, Sanudo C, Hernandez JL, Amado JA, Zarrabeitia A, Gonzalez-Macias J (2005) Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone 36(5): 917–925PubMedCrossRefGoogle Scholar
  26. Yamada Y, Ando F, Niino N, Shimokata H (2005) Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J Mol Med 83(1): 50–57PubMedCrossRefGoogle Scholar
  27. Napoli N, Villareal DT, Mumm S, Halstead L, Sheikh S, Cagaanan M, Rini GB, Armamento-Villareal R (2005) Effect of CYP1A1 gene polymorphisms on estrogen metabolism and bone density. J Bone Miner Res 20(2): 232–239PubMedCrossRefGoogle Scholar
  28. Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, Brixen K, Mosekilde L (2005) Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone 36(3): 577–583PubMedCrossRefGoogle Scholar
  29. Moffett SP, Zmuda JM, Oakley JI, Beck TJ, Cauley JA, Stone KL, Lui LY, Ensrud KE, Hillier TA, Hochberg MC, Morin P, Peltz G, Greene D, Cummings SR (2005) Tumor necrosis factor-alpha polymorphism, bone strength phenotypes, and the risk of fracture in older women. J Clin Endocrinol Metab 90(6): 3491–3497PubMedCrossRefGoogle Scholar
  30. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30(2): 233–237PubMedCrossRefGoogle Scholar
  31. Vesa TH, Marteau P, Korpela R (2000) Lactose intolerance. J Am Coll Nutr 19: 165S–175SPubMedGoogle Scholar
  32. Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn RJ, Fahrleitner-Pammer A, Berghold A, Goessler W, Stepan V, Dobnig H, Leb G, Renner W (2004) Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res 19(1): 42–47PubMedCrossRefGoogle Scholar
  33. Högenauer C, Hammer HF, Mellitzer K, Renner W, Krejs GJ, Toplak H (2005) Evaluation of a new DNA test compared with the lactose hydrogen breath test for the diagnosis of lactase non-persistence. Eur J Gastroenterol Hepatol 17(3): 371–376PubMedCrossRefGoogle Scholar
  34. Kuokkanen M, Enattah NS, Oksanen A, Savilahti E, Orpana A, Jarvela I (2003) Transcriptional regulation of the lactase-phlorizin hydrolase gene by polymorphisms associated with adult-type hypolactasia. Gut 52(5): 647–652PubMedCrossRefGoogle Scholar
  35. Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn R, Fahrleitner-Pammer A, Berghold A, Goessler W, Stepan V, Dobnig H, Leb G, Renner W (2004) Genetic disposition for adult lactose intolerance and relation to bone properties and fractures during lifetime. Calcif Tiss Int 74: 128Google Scholar
  36. Enattah NS, Sulkava R, Halonen P, Kontula K, Jarvela I (2005) Genetic variant of lactase-persistent C/T-13910 is associated with bone fractures in very old age. J Am Geriatr Soc 53(1): 79–82PubMedCrossRefGoogle Scholar
  37. Enattah N, Pekkarinen T, Valimaki MJ, Loyttyniemi E, Jarvela I (2005) Genetically defined adult-type hypolactasia and self-reported lactose intolerance as risk factors of osteoporosis in Finnish postmenopausal women. Eur J Clin Nutr 59(10): 1105–1111 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Endocrinology and Nuclear MedicineEndocrinological-Nuclear-Medical LaboratoryGrazAustria

Personalised recommendations