Advertisement

Histologic changes in early colonic anastomotic healing using autologous platelet-rich fibrin matrix

  • Bernhard DauserEmail author
  • Wolf Heitland
  • Franz G. Bader
  • Walter Brunner
  • Yael Nir
  • Andrew P. Zbar
original article
  • 11 Downloads

Summary

Background

Anastomotic leakage represents a devastating post-surgical event with surgeon- and patient-related causes. The early lag phase of healing (day 0–4) is a time of increased vulnerability. The current role of tissue sealants as anastomotic adjuncts remains unclear, with controversial results reported. Platelet-rich plasma provides a reliable source of growth factors supporting wound healing. We aimed to assess the impact of a novel autologous platelet-rich fibrin (PRF) agent (Obsidian-ASG® matrix; GergMed Medizintechnik, Baiern, Germany) on colonic anastomotic healing in a porcine model.

Methods

Left-sided colonic anastomoses were constructed in 16 pigs with reinforcement using the Obsidian-ASG® matrix in 12 animals. Animals were sacrificed on days 0, 4, 10 and 30, with histologic assessment of the anastomotic line along with evaluation of fibrotic tissue maturation, foreign body reactivity and mucin production. Collagen maturity and immunohistochemical changes of angiogenesis and infiltrating macrophage profiles were determined as well.

Results

There was no observable effect in matrix-treated animals on epithelial line thickness, granulation tissue formation, foreign body reactivity or mucosal restitution. Matrix-treated animals showed higher mucin production on day 4 accompanied by a more mature collagen and a greater degree of early angiogenic response with a higher infiltration density of M2 macrophages. Additionally, anastomotic burst pressure in matrix-treated animals was higher on day 0, 4, 10 and 30 (100, 100, 210, 160 vs. 40, 30, 60, 20 mm Hg, respectively).

Conclusion

Obsidian-ASG® matrix may have beneficial effects on anastomotic healing by shifting the inflammatory response towards a mature and more stable collagen phenotype in the early phase.

Keywords

Platelet-rich fibrin Sealant Tissue adhesives Colorectal anastomosis Porcine model 

Notes

Funding

The study presented was sponsored by GergMed Medizintechnik, Baiern, Germany.

Compliance with ethical guidelines

Conflict of interest

B. Dauser, W. Heitland, F.G. Bader, W. Brunner and A.P. Zbar have no personal financial ties to Vivostat®, Allerød, Denmark or GergMed Medizintechnik, Baiern, Germany, or patent holdings etc. to declare. Y. Nir works as a consultant for GergMed Medizintechnik, Baiern, Germany.

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Buchs NC, Gervaz P, Secic M, Mugnier-Konrad B, Morel P. Incidence, consequences, and risk factors for anastomotic dehiscence after colorectal surgery: a prospective monocentric study. Int J Colorectal Dis. 2008;23:265–70.CrossRefGoogle Scholar
  2. 2.
    McDermott FD, Heeney A, Kelly ME, et al. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg. 2015;102:462–79.CrossRefGoogle Scholar
  3. 3.
    Berho M, Wexner SD, Botero-Anug A‑M, Pelled D, Fleshman JW. Histopathologic advantages of compression ring anastomosis healing as compared with stapled anastomosis in a porcine model: a blinded comparative study. Dis Colon Rectum. 2014;57:506–13.CrossRefGoogle Scholar
  4. 4.
    Pommergaard H‑C, Achiam MP, Rosenberg J. External coating of colonic anastomoses: a systematic review. Int J Colorectal Dis. 2012;27:1247–58.CrossRefGoogle Scholar
  5. 5.
    Vakalopoulos KA, Daams F, Wu Z, et al. Tissue adhesives in gastrointestinal anastomosis: a systematic review. J Surg Res. 2013;180:290–300.CrossRefGoogle Scholar
  6. 6.
    Stergios K, Kontzoglou K, Pergialiotis V, Korou LM, Frountzas M, Lalude O, Nikiteas N. The potential effect of biological sealants on colorectal anastomosis: healing in experimental research involving severe diabetes. Ann R Coll Surg Engl. 2017;99:189–92.CrossRefGoogle Scholar
  7. 7.
    Vakalopulos KA, Wu Z, Kroese LF, Jeekel J, Kleinrinsenk G‑J, Dodou D, Lam KH, Lange JF. Sutureless closure of colonic defects with tissue adhesives: an in vivo study. Am J Surg. 2017;213:151–8.CrossRefGoogle Scholar
  8. 8.
    Akgün A, Kuru S, Uraldi C, Tekin O, Karip B, Tug T, Ongoren AU. Early effects of fibrin sealant on colonic anastomosis in rats: an experimental and case-control study. Tech Coloproctol. 2006;10:208–14.CrossRefGoogle Scholar
  9. 9.
    Giuratrabocchetta S, Rinaldi M, Cuccia F, Lemma M, Piscitelli D, Polidoro P, Altomare DF. Protection of intestinal anastomosis with biological glues: an experimental method. Tech Coloproctol. 2011;15:153–8.CrossRefGoogle Scholar
  10. 10.
    Vakalopoulos KA, Wu Z, Kroese LF, van der Horst PH, Lam KH, Dodou D, Jeekel JJ, Lange JF. Clinical, mechanical, and immunohistopathological effects of tissue adhesives on the colon: an in‐vivo study. J Biomed Mater Res Part B Appl Biomater. 2017;105(4):846–54.CrossRefGoogle Scholar
  11. 11.
    Nordentoft T. Sealing of gastrointestinal anastomoses with fibrin glue coated collagen patch. Dan Med J. 2015;62(5):B5081.PubMedGoogle Scholar
  12. 12.
    Huh JW, Kim HR, Kim YJ. Anastomotic leakage after laparoscopic resection of rectal cancer: the impact of fibrin glue. Am J Surg. 2010;199:435–41.CrossRefGoogle Scholar
  13. 13.
    Spotnitz WD. Fibrin sealant: Past, present and future: a brief review. World J Surg. 2010;34:632–4.CrossRefGoogle Scholar
  14. 14.
    Nanditha S, Chandrasekaran B, Muthusamy S, Muthu K. Apprising the diverse facets of platelet rich fibrin in surgery through a systematic review. Int J Surg. 2017;46:186–94.CrossRefGoogle Scholar
  15. 15.
    Rughetti A, Giusti I, D’Ascenzo S, Leocata P, Carta G, Pavan A, Dell’Orso L, Dolo V. Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfus. 2008;6:12–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dohan Ehrenfest DM, de Peppo GM, Doglioli P, Sammartino G. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors. 2009;27:63–9.CrossRefGoogle Scholar
  17. 17.
    Bai MY, Wang CW, Wang JY, Lin MF, Chan WP. Three-dimensional structure and cytokine distribution of platelet-rich fibrin. Clinics (Sao Paulo). 2017;72:116–24.CrossRefGoogle Scholar
  18. 18.
    Kjaergard HK, Fairbrother JE, Cederholm-Williams SA, Edwardson PAD, Hollingsbee DA, Holm NE. The Vivostat system for the automated preparation of autologous fibrin sealant. Cardiovasc Eng. 1997;2:204–6.Google Scholar
  19. 19.
    Velada JL, Hollingsbee DA, Menzies AR, Cornwell R, Dodd RA. Reproducibility of the mechanical properties of Vivostat patient-derived fibrin sealant. Biomaterials. 2002;23:2249–54.CrossRefGoogle Scholar
  20. 20.
    Kilkenny C, Browne W, Cuthill IC, et al. Animal research: Reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.CrossRefGoogle Scholar
  21. 21.
    Dodd RA, Cornwell R, Holm NE, Garbasch A, Hollingsbee DA. The Vivostat application system: a comparison with conventional fibrin sealant systems. Technol Health Care. 2002;10(5):401–11.PubMedGoogle Scholar
  22. 22.
    Kjaergard HK, Velada JL, Pedesen JH, Fleron H, Hollingsbee DA. Comparative kinetics of polymerization of three sealants and influence on timing of tissue adhesion. Thromb Res. 2000;98:221–8.CrossRefGoogle Scholar
  23. 23.
    Zuhlke HV, Lorenz EM, Straub EM, et al. Pathophysiology and classification of adhesions. Langenbecks Arch Chir Suppl Ii Verh Dtsch Ges Chir. 1990;345:1009–16.Google Scholar
  24. 24.
    Kopelman Y, Siersema PD, Nir Y, et al. Endoluminal compression clip: full-thickness resection of the mesenteric bowel wall in a porcine model. Gastrointest Endosc. 2009;70:1146–57.CrossRefGoogle Scholar
  25. 25.
    Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarization: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE. 2013;8(11):e80908.CrossRefGoogle Scholar
  26. 26.
    Lundquist R, Dziegel MH, Agren MS. Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin. Wound Repair Regen. 2008;16:356–63.CrossRefGoogle Scholar
  27. 27.
    Isobe K, Suzuki M, Watanabe T, Kitamura Y, Suzuki T, Kawabata H, Nakamura M, Okudera T, Okudera H, Uematsu K, et al. Platelet-rich fibrin prepared from stored whole-blood samples. Int J Implant Dent. 2017;3(1):6.CrossRefGoogle Scholar
  28. 28.
    O’Connell SM, Impeduglia T, Hessler K, Wang XJ, Carroll RJ, Dardik H. Autologous platelet rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers. Wound Repair Regen. 2017;16:749–56.CrossRefGoogle Scholar
  29. 29.
    Yu P, Zhai Z, Jin X, Yang X, Qi Z. Clinical application of platelet-rich fibrin in plastic and reconstructive surgery: a systematic review. Aesthetic Plast Surg. 2018;42:511–9.CrossRefGoogle Scholar
  30. 30.
    Yamaguchi R, Terashima H, Yoneyama S, Tadano S, Ohkohchi N. Effects of platelet-rich plasma on intestinal anastomotic healing in rats: PRP concentration is a key factor. J Surg Res. 2012;173:258–66.CrossRefGoogle Scholar
  31. 31.
    Byrne DJ, Hardy J, Wood RA, McIntosh R, Hopwood D, Cuschieri A. Adverse influence of fibrin sealant on the healing of high-risk sutured colonic anastomoses. J R Coll Surg Edinb. 1992;37:394–8.PubMedGoogle Scholar
  32. 32.
    Fresno L, Fondevila D, Banmbo O, Chacaltana A, Garcia F, Andaluz A. Effects of platelet-rich plasma on intestinal wound healing in pigs. Vet J. 2010;185:322–7.CrossRefGoogle Scholar
  33. 33.
    Fajardo AD, Chun J, Stewart D, Safar B, Fleshman JW. 1.5:1 meshed AlloDerm bolsters for stapled rectal anastomoses does not provide any advantage in anastomotic strength in a porcine model. Surg Innov. 2011;18(1):21–8.CrossRefGoogle Scholar
  34. 34.
    Yol S, Tekin A, Yilmaz H, Kucukkartallar T, Esen H, Caglayan O, Tatkan Y. Effects of platelet rich plasma on colonic anastomosis. J Surg Res. 2008;146:190–4.CrossRefGoogle Scholar
  35. 35.
    Krarup P‑M, Eld M, Heiemeier K, Jorgensen LN, Hansen MB, Ågren MS. Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair. Int J Colorectal Dis. 2013;28:1151–519.CrossRefGoogle Scholar
  36. 36.
    Shogan BD, Smith DP, Christley S, Gilbert JA, Zaborina O, Alverdy JC. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome. 2014;2:35.CrossRefGoogle Scholar
  37. 37.
    Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S, Bethel C, Ward M, Muldoon JP, Singer M, An G, Umanskiy K, Konda V, Shakhsheer B, Luo J, Klabbers R, Hancock LE, Gilbert J, Zaborina O, Alverdy JC. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med. 2015;7:286ra68.  https://doi.org/10.1126/scitranslmed.3010658.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Skowron KB, Shogan BD, Rubin DT, Hyman NH. The new frontier: the intestinal microbiome and surgery. J Gastrointest Surg. 2018;22:1277–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgerySt John of God HospitalViennaAustria
  2. 2.Klinik für Allgemein‑, Viszeral- und Minimalinvasive ChirurgieISAR KlinikumMünchenGermany
  3. 3.Department Colorectal SurgeryKantonsspital St. GallenSt. GallenSwitzerland
  4. 4.SPRIG ConsultingWilmetteUSA
  5. 5.Dept Neuroscience and AnatomyMelbourne UniversityMelbourneAustralia

Personalised recommendations