Advertisement

Facies

, 66:3 | Cite as

Coated grain petrography and geochemistry as palaeoenvironmental proxies for the Aptian strata of the southern Neo-Tethys Ocean, Persian Gulf, Iran

  • Mohammad Bahrehvar
  • Hamzeh MehrabiEmail author
  • Hossain Rahimpour-Bonab
Original Article
  • 63 Downloads

Abstract

Aptian carbonates, major hydrocarbon reservoirs in the Persian Gulf, were deposited on a ramp-like platform to intrashelf basinal setting under the controls of tectonics and eustasy. Coated grains (oncoids and pisoids) are abundant and show different textures and internal microstructures depending on the stratigraphic position. These Aptian coated grains are divided according to their texture, cortex composition, morphology, type of biota and internal structure, based on petrographic (routine petrography, cathodoluminescence and scanning electron microscope) and geochemical analyses. Accordingly, four types of oncoid and a pisoid group are identified. Oncoid types 1 and 2 along with pisoids typically formed during phases of relative sea-level fall developed within the regressive systems tract (RST). They are commonly associated with shallow-marine (inner ramp), high-energy shoal facies and occur below exposure horizons, at sequence boundaries. Oncoid types 3 and 4 show micro-encrusters (i.e. Lithocodium aggregatum and Bacinella irregularis) and usually occur in a wackestone texture that indicates deposition in a low-energy lagoonal setting with low sedimentation rate during rises in relative sea level (i.e. a transgressive systems tract: TST). Stable carbon and oxygen isotopes are used to define the OAE1a and its environmental effects in the Dariyan Formation. Palaeoenvironmental proxies reflecting energy level, sedimentation rate and trophic level are evaluated for Aptian sedimentary sequences deposited on the southern margin of the Neo-Tethys Ocean.

Keywords

Oncoids Aptian Carbon isotopes OAE1a Persian Gulf Neo-Tethys 

Notes

Acknowledgements

The Iranian Offshore Oil Company (IOOC) and the University of Tehran provided facilities for this research, for which the authors are grateful. The University of Windsor’s stable isotope laboratory is thanked for the CL and isotopic analyses. Dr. Amirhossein Enayati-Bidgoli, journal editor (Prof. M. E. Tucker) and anonymous reviewers are acknowledged for their helpful comments that greatly improved this manuscript. The corresponding author dedicated this paper to his lovely girl, Tiyara.

References

  1. Al-Fares AA, Bouman M, Jeans P (1998) A new look at the Middle to Lower Cretaceous stratigraphy, offshore Kuwait. GeoArabia 3:543–560Google Scholar
  2. Al-Ghamdi N, Pope M (2014) Integrated high resolution chemostratigraphy and facies-based stratigraphic architecture of the Lower Cretaceous (Aptian), Shu’aiba Formation, Saudi Arabia. AAPG Bull 98(8):1521–1549CrossRefGoogle Scholar
  3. Alsharhan AS, Nairn AEM (1993) Carbonate platform models of Arabian Cretaceous reservoirs. In: Simo JAT, Scott RW, Masse JP (eds) Cretaceous Carbonate Platforms, American Association of Petroleum Geologists, vol 56. pp 173–148Google Scholar
  4. Alsharhan AS, Al-Aasm I, Salah M (2000) Stratigraphy, Stable Isotopes, and Hydrocarbon Potential of the Aptian Shu’aiba Formation, U.A.E. SEPM Spec Publ 69:299–314Google Scholar
  5. Banner FT, Finch EM, Simmons MD (1990) On Lithocodium Elliott (Calcareous algae); its paleobiological and stratigraphical significance. J Micropalaeontol 9(1):21–35CrossRefGoogle Scholar
  6. Barclay RS, McElwain JC, Sageman BB (2010) Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat Geosci 3(3):205CrossRefGoogle Scholar
  7. Bornemann A, Norris RD, Friedrich O, Beckmann B, Schouten S, Damsté JSS, Wagner T (2008) Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319(5860):189–192CrossRefGoogle Scholar
  8. Bottini C, Erba E, Tiraboschi D, Jenkyns HC, Schouten S, Sinninghe Damsté JS (2015) Climate variability and ocean fertility during the Aptian Stage. Clim Past 11:383–402CrossRefGoogle Scholar
  9. Brasier MD (1995) Fossil indicators of nutrient levels. 1: Eutrophication and climate change. Geol Soc Lond Spec Publ 83(1):113–132CrossRefGoogle Scholar
  10. Catuneanu O (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J Afr Earth Sci 35(1):1–43CrossRefGoogle Scholar
  11. Catuneanu O, Galloway WE, Kendall CGSTC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Report for the International Commission on Stratigraphy. Newslett Stratigr Spec Issue 44(3):173–245CrossRefGoogle Scholar
  12. Cherchi A, Schroeder R (2006) Remarks on the systematic position of Lithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. Facies 52(3):435–440CrossRefGoogle Scholar
  13. Ciarapica G, Passeri L (1983) Coated grains in contrasted environmental situations: norian and lower liassic of Northern Apennines. In: Peryt TM (ed) Coated Grains. Springer, Berlin, HeidelbergGoogle Scholar
  14. Curray JR (1964) Transgressions and regressions. In: Mitter RL (ed) Papers in marine geology. Macmillan, New YorkGoogle Scholar
  15. Droste H (2010) High-resolution seismic stratigraphy of the Shu’aiba and Natih formations in the Sultanate of Oman: Implications for Cretaceous epeiric carbonate platform systems. Geol Soc Lond Spec Publ 329(1):145–162CrossRefGoogle Scholar
  16. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Am Assoc Pet Geol 1:108–121Google Scholar
  17. Dunhill AM, Foster WJ, Sciberras J, Twitchett RJ (2018) Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems. Palaeontology 61(1):133–148CrossRefGoogle Scholar
  18. Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies 40(1):101–129CrossRefGoogle Scholar
  19. Dupraz C, Strasser A (2002) Nutritional modes in coral—Microbialite reefs (Jurassic, Oxfordian, Switzerland): Evolution of trophic structure as a response to environmental change. Palaios 17(5):449–471CrossRefGoogle Scholar
  20. Elliott GF (1956) Further records of fossil calcareous algae from the Middle East. Micropaleontology 2(4):327–334CrossRefGoogle Scholar
  21. Elliott GF (1963) Problematical microfossils from the Cretaceous and Paleocene of the Middle East. Palaeontology 6(2):293–300Google Scholar
  22. Embry AF (1993) Transgressive-regressive (T-R) sequence analysis of the Jurassic succession of the Sverdrup Basin. Can Arct Archipel Can J Earth Sci 30:301–320CrossRefGoogle Scholar
  23. Embry AF (1995) Sequence boundaries and sequence hierarchies: problems and proposals. In: Steel R et al (eds) Sequence stratigraphy on the northwest European margin, vol 5. Norwegian Petroleum Society Special Publication, London, pp 1–11Google Scholar
  24. Embry AF (2002) Transgressive-regressive (T–R) sequence stratigraphy. Program and abstracts—society of economic paleontologists. Gulf Coast Sect Res Conf 22:151–172Google Scholar
  25. Embry AF, Klovan JE (1971) A late devonian reef tract on northeastern banks Island, Northwest territories. Bull Can Pet Geol 19:730–781Google Scholar
  26. Erba E (1994) Nannofossils and superplumes: the early Aptian “nannoconid crisis”. Paleoceanogr Paleoclimatol 9(3):483–501CrossRefGoogle Scholar
  27. Erba E, Channell JE, Claps M, Jones C, Larson R, Opdyke B, Torricelli S (1999) Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy); a” reference section” for the Barremian-Aptian interval at low latitudes. J Foraminifer Res 29(4):371–391Google Scholar
  28. Erba E, Duncan RA, Bottini C, Tiraboschi D, Weissert H, Jenkyns HC, Malinverno A (2015) Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. The origin, evolution, and environmental impact of oceanic large igneous provinces. Geol Soc Am Spec Pap 511:271–303Google Scholar
  29. Erbacher J, Thurow J (1997) Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar Micropaleontol 30(1–3):139–158CrossRefGoogle Scholar
  30. Esteban M (1976) Vadose Pisolite and Caliche: GEOLOGIC NOTES. AAPG Bulletin 60(11):2048–2057Google Scholar
  31. Esteban M, Pray LC (1983) Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and West Texas. In: Coated grains. Springer, Berlin, pp 503–537CrossRefGoogle Scholar
  32. Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application. Springer Science and Business Media, BerlinCrossRefGoogle Scholar
  33. Föllmi KB (1995) 160 my record of marine sedimentary phosphorus burial: coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology 23(6):503–506CrossRefGoogle Scholar
  34. Föllmi KB, Godet A, Bodin S, Linder P (2006) Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanogr Paleoclimatol 21(4):PA4211Google Scholar
  35. Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to Late Cretaceous oceans-a 55 my record of Earth’s temperature and carbon cycle. Geology 40(2):107–110CrossRefGoogle Scholar
  36. Fugagnoli A (2004) Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeogr Palaeoclimatol Palaeoecol 205(1–2):111–130CrossRefGoogle Scholar
  37. Hansen KW, Wallmann K (2003) Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Am J Sci 303(2):94–148CrossRefGoogle Scholar
  38. Heim A (1916) Monographie der Churrsten-Mattstock-Gruppe. 3. Teil. Beitrage zur Geologischen Karte der Schweiz [Neue Folge] 20:369573Google Scholar
  39. Herrle JO, Pross J, Friedrich O, Köbler P, Hemleben C (2003) Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeogr Palaeoclimatol Palaeoecol 190:399–426CrossRefGoogle Scholar
  40. Hu X, Zhao K, Yilmaz IO, Li Y (2012) Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretac Res 38:40–51CrossRefGoogle Scholar
  41. Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30(2):123–126CrossRefGoogle Scholar
  42. Huck S, Rameil N, Korbar T, Heimhofer U, Wieczorek TD, Immenhauser A (2010) Latitudinally different responses of Tethyan shoal-water carbonate systems to the Early Aptian oceanic anoxic event (OAE 1a). Sedimentology 57(7):1585–1614CrossRefGoogle Scholar
  43. Huck S, Heimhofer U, Rameil N, Bodin S, Immenhauser A (2011) Strontium and carbon-isotope chronostratigraphy of Barremian-Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a. Earth Planet Sci Lett 304(3–4):547–558CrossRefGoogle Scholar
  44. Huck S, Heimhofer U, Immenhauser A (2012) Early Aptian algal bloom in a neritic proto-North Atlantic setting: Harbinger of global change related to OAE1a? GSA Bull 124(11–12):1810–1825CrossRefGoogle Scholar
  45. Huck S, Heimhofer U, Immenhauser A, Weissert H (2013) Carbon-isotope stratigraphy of Early Cretaceous (Urgonian) shoal-water deposits: Diachronous changes in carbonate-platform production in the north-western Tethys. Sed Geol 290:157–174CrossRefGoogle Scholar
  46. Huck S, Stein M, Immenhauser A, Skelton PW, Christ N, Föllmi KB, Heimhofer U (2014) Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors. Sed Geol 313:15–31CrossRefGoogle Scholar
  47. Immenhauser A, Creusen A, Esteban M, Vonhof H (2000) Recognition and interpretation of polygenetic discontinuity surfaces in the Middle Cretaceous Shu’aiba, Nahr Umr and Natih formations of North Oman. GeoArabia 5:299–322Google Scholar
  48. Immenhauser A, Hillgaertner H, Bentum EV (2005) Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a. Sedimentology 52:77–99CrossRefGoogle Scholar
  49. Jarvis I, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in Late Cretaceous carbon isotopes: a new δ 13 C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag 143:561–608CrossRefGoogle Scholar
  50. Jarvis I, Lignum JS, Gröcke DR, Jenkyns HC, Pearce MA (2011) Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanogr Paleoclimatol 26(3):PA3201Google Scholar
  51. Jenkyns HC (1980) Cretaceous anoxic events: from continents to oceans. J Geol Soc 137(2):171–188CrossRefGoogle Scholar
  52. Jenkyns HC (1995) Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. Proc ODP Sci Results 143:99–104Google Scholar
  53. Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11(3):Q03004.  https://doi.org/10.1029/2009GC002788 CrossRefGoogle Scholar
  54. Jones B, MacDonald RW (1989) Micro-organisms and crystal fabrics in cave pisoliths from Grand Cayman, British West Indies. J Sediment Res 59(3):387–396Google Scholar
  55. Karakitsios V, Tzortzaki E, Giraud F, Pasadakis N (2018) First evidence for the early Aptian Oceanic Anoxic Event (OAE1a) from the Western margin of the Pindos Ocean (NW Greece). Geobios 51(3):187–210CrossRefGoogle Scholar
  56. Khoshfam N, Rahimpour-Bonab H, Jahani D, Morsalnezhad D (2016) Stratigraphic evidence for development of Aptian intrashelf basin in the Zagros area, eastern Fars Province. SW Iran. Turkish J Earth Sci.  https://doi.org/10.3906/yer-1502-14 CrossRefGoogle Scholar
  57. Koch R, Moussavian E, Ogorelec B, Skaberne D, Bucur II (2002) Development of a Lithocodium (syn. Bacinella irregularis)-reef-mound-A patch reef within Middle Aptian lagoonal limestone sequence near Nova Gorica (Sabotin Mountain, W-Slovenia)Google Scholar
  58. Leinfelder RR, Nose M, Schmid DU, Werner W (1993) Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies 29(1):195CrossRefGoogle Scholar
  59. Littler K, Robinson SA, Bown PR, Nederbragt AJ, Pancost RD (2011) High sea-surface temperatures during the Early Cretaceous Epoch. Nat Geosci 4(3):169CrossRefGoogle Scholar
  60. Luperto Sinni E (1979) I microfossili del “livello a Palorbitolina lenticularis” delle Murge Baresi. Riv Ital Paleont 85:411–480Google Scholar
  61. Masse J-P (1989) Relations entre modifications biologiques et phénomènes géologiquessur les plates-formes carbonatées du domaine périméditerranéen au passage Bédoulien-Gargasien. In: Cotillon P (ed) Lesévénements de la partie moyenne de la Crétacé (Aptien-Turonien), Géob. Mém. Spéc. vol 11, pp 279–294CrossRefGoogle Scholar
  62. Masse JP, Philip J, Camoin G (1995) The Cretaceous Tethys. In: Naim AEM (ed) The Ocean Basins and Margins 8, The Tethys Ocean. Plenum Press, New York, pp 215–236Google Scholar
  63. Maurer F, Al-Mehsin K, Pierson BJ, Eberli GP, Warrlich G, Drysdale D, Droste HJ (2010) Facies characteristics and architecture of Upper Aptian Shu’aiba clinoforms in Abu Dhabi. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian-Aptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate: GeoArabia Special Publication 4, vol 2. Gulf PetroLink, Bahrain, pp 445–468Google Scholar
  64. Maurer F, Van Buchem FSP, Eberli GP, Pierson BJ, Raven MJ, Larsen PH, Vincent B (2013) Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova 25(2):87–94CrossRefGoogle Scholar
  65. Mehrabi H, Rahimpour-Bonab H, Hajikazemi E, Esrafili-Dizaji B (2015) Geological reservoir characterization of the Lower Cretaceous Dariyan Formation (Shu’aiba equivalent) in the Persian Gulf, southern Iran. Mar Pet Geol 68:132–157CrossRefGoogle Scholar
  66. Mehrabi H, Rahimpour-Bonab H, Al-Aasm I, Hajikazemi E, Esrafili-Dizaji B, Dalvand M, Omidvar M (2018) Palaeo-exposure surfaces in the Aptian Dariyan Formation, Offshore SW Iran: Geochemistry and reservoir implications. J Pet Geol 41(4):467–494CrossRefGoogle Scholar
  67. Mehrabi H, Ranjbar-Karami R, Roshani-Nejad M (2019) Reservoir rock typing and zonation in sequence stratigraphic framework of the Cretaceous Dariyan Formation. Persian Gulf. Carbonates Evaporites.  https://doi.org/10.1007/s13146-019-00530-2 CrossRefGoogle Scholar
  68. Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, Caron M (1998) High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13(5):530–545CrossRefGoogle Scholar
  69. Midtkandal I, Svensen HH, Planke S, Corfu F, Polteau S, Torsvik TH, Faleide JI, Grundvåg SA, Selnes H, Kürschner W, Olaussen S (2016) The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary. Palaeogeogr Palaeoclimatol Palaeoecol 463:126–135CrossRefGoogle Scholar
  70. Misumi K, Yamanaka Y, Tajika E (2018) Numerical simulation of atmospheric and oceanic biogeochemical cycles to an episodic CO2 release event: implications for the cause of mid-Cretaceous Ocean Anoxic Event-1a. Earth Planet Sci Lett 286:316–323CrossRefGoogle Scholar
  71. Mutterlose J (1992) Biostratigraphy and palaeobiogeography of Early Cretaceous calcareous nannofossils. Cretac Res 13(2):167–189CrossRefGoogle Scholar
  72. Mutterlose J (1998) The Barremian-Aptian turnover of biota in northwestern Europe: evidence from belemnites. Palaeogeogr Palaeoclimatol Palaeoecol 144(1–2):161–173CrossRefGoogle Scholar
  73. Mutterlose J, Bottini C, Schouten S, Sinninghe-Damste JS (2014) High sea-surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm. Geology 42(5):439–442CrossRefGoogle Scholar
  74. Naderi-Khujin M, Seyrafian A, Vaziri-Moghaddam H, Tavakoli V (2016) A record of global change: OAE 1a in Dariyan shallow-water platform carbonates, southern Tethys, Persian Gulf. Iran. Facies 62:25.  https://doi.org/10.1007/s10347-016-0476-6 CrossRefGoogle Scholar
  75. Najarro M, Rosales I, Martín-Chivelet J (2011) Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: Prelude of the Oceanic Anoxic Event 1a? Sed Geol 235(1–2):50–71CrossRefGoogle Scholar
  76. Navidtalab A, Rahimpour-Bonab H, Huck S, Heimhofer U (2016) Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran. Sediment Geol 346:35–48CrossRefGoogle Scholar
  77. Navidtalab A, Heimhofer U, Huck S, Omidvar M, Rahimpour-Bonab H, Aharipour R, Shakeri AR (2019) Biochemostratigraphy of an upper Albian–Turonian succession from the southeastern Neo-Tethys margin, SW Iran. Palaeogeogr Palaeoclimatol Palaeoecol.  https://doi.org/10.1016/j.palaeo.2019.109255 CrossRefGoogle Scholar
  78. Neuweiler F, Reitner J (1992) Karbonatbanke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoicic—Palaobathymetrie, Palaookologie und stratigraphisches A quivalent zu thrombolithischen Mud Mounds. Berliner Geowiss Abh 3:273–293Google Scholar
  79. Norris RD, Wilson PA (1998) Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26(9):823–826CrossRefGoogle Scholar
  80. Peryt TM (1983) Coated grains. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  81. Pierson BJ, Eberli GP, Al-Mehsin K, Al-Menhali S, Warrlich G, Droste HJ, Maurer F, Whitworth J, Drysdale D (2010) Seismic stratigraphy and depositional history of the Upper Shu’aiba (Late Aptian) in the UAE and Oman. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian-Aptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate: GeoArabia Special Publication 4, vol 2. Gulf PetroLink, Bahrain, pp 411–444Google Scholar
  82. Pittet B, van Buchem FS, Hillgärtner H, Razin P, Grötsch J, Droste H (2002) Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian-Aptian shallow-water carbonates in northern Oman. Sedimentology 49(3):555–581CrossRefGoogle Scholar
  83. Premoli Silva I, Erba E, Salvini G, Locatelli C, Verga D (1999) Biotic changes in Cretaceous oceanic anoxic events of the Tethys. J Foraminifer Res 29(4):352–370Google Scholar
  84. Radoičić R (1959) Nekoliko problematic nih mikrofosila iz dinarske krede. Bull Serv Geol Geophys R P Serbie, XVII, pp 87–92Google Scholar
  85. Rameil N, Immenhauser A, Warrlich G, Hillgaertner H, Droste HJ (2010) Morphological patterns of Aptian Lithocodium–Bacinella geobodies: relation to environment and scale. Sedimentology 57(3):883–911CrossRefGoogle Scholar
  86. Rameil N, Immenhauser A, Csoma AE, Warrlich G (2012) Surfaces with a long history: the Aptian top Shu’aiba Formation unconformity, Sultanate of Oman. Sedimentology 59(1):212–248CrossRefGoogle Scholar
  87. Renard M (1985) Géochimie des carbonates pélagiques: Miseen évidence des fluctuations de la composition des eaux océaniques depuis 140 M.A., essai de chimiostratigraphie. Doc. Bur. Rech. Géol. Mineral, vol 85, pp 650Google Scholar
  88. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 21–51CrossRefGoogle Scholar
  89. Sandberg PA (1985) Non-skeletal aragonite and pCO2 in the phanerozoic and proterozoic. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present, vol 32. American Geophysical Union Monograph, Washington, DC, pp 585–594Google Scholar
  90. Schlagintweit F, Bover-Arnal T, Salas R (2010) New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic-Lower Cretaceous): two ulvophycean green algae (? Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56(4):509–547CrossRefGoogle Scholar
  91. Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie en mijnbouw 55(3–4):179–184Google Scholar
  92. Schmid DU (1996) Marine mikrobolithe und mikroinkrustierer aus dem Oberjura. Profil 9:101–251Google Scholar
  93. Schmid DU, Leinfelder RR (1996) The Jurassic Lithocodium aggregatumTroglotella incrustans foraminiferal consortium. Palaeontology 39(1):21–52Google Scholar
  94. Schmitt K, Heimhofer U, Frijia G, Huck S (2019) Platform-wide shift to microbial carbonate production during the late Aptian. Geology 47(8):786–790CrossRefGoogle Scholar
  95. Scotese CR (2011) Paleogeographic and Paleoclimatic atlas. AAPG Search and Discovery Article, 30192Google Scholar
  96. Segonzac G, Marin P (1972) Lithocodium aggregatum Elliott and Bacinella irregularis Radoicic of the Aptian of Teruel (Spain); two stages of growth of one and the same organism incertae sedis. Bull Geol Soc Fr 7(1–5):331–335CrossRefGoogle Scholar
  97. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian plate sequence stratigraphy. GeoArabia 2:371Google Scholar
  98. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  99. Strohmenger C, Steuber T, Ghani A, Barwick DG, Al-Mazrooei SHA, Al-Zaabi NO (2010) Sedimentology and chemostratigraphy of Shu’aiba depositional sequences (Abu Dhabi, United Arab Emirates). In: van Buchem FSP, Al-Husseini ML, Maurer F, Droste HJ (Eds) Barremian—Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian plate, vol 4. GeoArabia Special Publication, Baharin, pp 341–365Google Scholar
  100. Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell, Oxford, p 482CrossRefGoogle Scholar
  101. Vachard D, Hauser M, Martini R, Zaninetti L, Matter A, Peters T (2001) New algae and problematica of algal afinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). Géobios 34:375–404CrossRefGoogle Scholar
  102. van Buchem FSP, Razin P, Homewood PW, Oterdoom WH, Philip J (2002) Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Natih Formation (middle Cretaceous) of northern Oman. AAPG Bull 86(1):21–53Google Scholar
  103. van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ, Yose LA (2010a) Sequence-stratigraphic synthesis of the Barremian-Aptian of the eastern Arabian Plate and implications for the petroleum habitat. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (Eds), Barremian-Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian plate, vol 4. GeoArabia Special Publication, Bahrain, no 1, pp 9–48Google Scholar
  104. van Buchem FSP, Baghbani D, Bulot LG, Caron M, Gaumet F, Hosseini A, Keyvani F, Schroeder R, Swennen R, Vedrenne V, Vincent B (2010b) Barremian—Lower Albian sequence stratigraphy of southwest Iran (Gadvan, Dariyan and Kazhdumi formations) and its comparison with Oman, Qatar and the United Arab Emirates. In: van Buchem FSP, Al-Husseini ML, Maurer F, Droste HJ (eds) Barremian–Aptian stratigraphy and hydrocarbon habitat of the eastern arabian plat, vol 4. GeoArabia Special Publication, Bahrain, pp 503–548Google Scholar
  105. van Wagoner JC, Mitchum RM, Campion KM, Rahmanian VD (1990) Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high-resolution correlation of time and facies: AAPG methods in exploration series No. 7, pp 55Google Scholar
  106. Védrine S, Strasser A, Hug W (2007) Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53(4):535–552CrossRefGoogle Scholar
  107. Wallmann K (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65(18):3005–3025CrossRefGoogle Scholar
  108. Wang Y, Huang C, Sun B, Quan C, Wu J, Lin Z (2014) Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci Rev 129:136–147CrossRefGoogle Scholar
  109. Webb GE (1996) Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43(6):947–971CrossRefGoogle Scholar
  110. Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161(4):695–702CrossRefGoogle Scholar
  111. Weissert H, Lini A, Föllmi KB, Kuhn O (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr Palaeoclimatol Palaeoecol 137(3–4):189–203CrossRefGoogle Scholar
  112. Wolf KH (1960) Simplified limestone classification. AAPG Bull 44(8):1414–1416Google Scholar
  113. Wynd AG (1965) Biofacies of the Iranian oil consortium agreement area. Iranian Offshore Oil Company, Report No. 1082Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Geology, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran

Personalised recommendations