, 65:41 | Cite as

The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review

  • D. SmrzkaEmail author
  • J. Zwicker
  • W. Bach
  • D. Feng
  • T. Himmler
  • D. Chen
  • J. PeckmannEmail author
Invited Review


Trace elements are actively cycled in seawater, are essential components for marine life, and are transported to the seafloor where they can become enriched in marine sediments. Trace element enrichment in marine sediments depends on local hydrography, redox conditions, and biological activity. Most redox-sensitive trace elements partake in biological cycling in seawater and sedimentary pore waters, and their distribution in the rock record can help to constrain the dynamics and changes in environmental conditions on geologic timescales. Carbonate minerals including calcite, aragonite, and dolomite readily adsorb and/or incorporate trace elements during precipitation. Although experimental laboratory studies concerning incorporation of trace elements into carbonate minerals have not always yielded unambiguous results, they have generally confirmed a strong tendency of carbonate minerals to accumulate and retain certain trace elements. Because natural carbonate minerals can archive trace elements, they have attracted attention as sources of information on biogeochemical processes. Nonetheless, drawbacks of using trace element contents of marine carbonates as paleoproxies exist due to mineral alteration during early diagenesis, subsequent burial diagenesis, and meteoric diagenesis. These processes can affect trace element contents in marine carbonates to different degrees, possibly leading to alteration or even a complete loss of their original trace element composition. This review summarizes current knowledge on the behavior of trace elements in seawater and interstitial pore water by integrating trace element cycling in the water column, their transport to the seafloor, and their subsequent incorporation into carbonate minerals. This work provides a comprehensive overview for the carbonate sedimentologist, detailing the water column and early diagenetic processes that affect trace element patterns of unaltered or poorly altered carbonate rocks used as archives of paleoenvironmental change.


Trace elements Rare earth elements Element incorporation Marine carbonates Paleoenvironment 



The writing of this article was supported by a Uni:Docs fellowship from the University of Vienna awarded to Daniel Smrzka, and by funding from the Austrian Academy of Sciences (ÖAW) through a DOC fellowship awarded to Jennifer Zwicker. Comments by Jay M. Gregg and an anonymous reviewer helped improve the manuscript.


  1. Abbott AN, Haley BA, McManus J, Reimers CE (2015) The sedimentary flux of dissolved rare earth elements to the ocean. Geochim Cosmochim Acta 154:186–200CrossRefGoogle Scholar
  2. Ahmed IAM, Crout NMJ, Young SD (2009) Kinetics of Cd sorption, desorption and fixation by calcite: a long-term radiotracer study. Geochim Cosmochim Acta 72:1498–1512CrossRefGoogle Scholar
  3. Akagi T (2013) Rare earth element (REE)-silicic acid complexes in seawater to explain the incorporation of REEs in opal and the “leftover” REEs in surface water: new interpretations of dissolved REE distribution profiles. Geochim Cosmochim Acta 113:174–192CrossRefGoogle Scholar
  4. Akagi T, Hashimoto Y, Fu F-F, Tsuno H, Tao H, Nakano Y (2004) Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies. Geochim Cosmochim Acta 68:2265–2273CrossRefGoogle Scholar
  5. Alexandratos VG, Elzinga EJ, Reeder RJ (2007) Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim Cosmochim Acta 71:4172–4187CrossRefGoogle Scholar
  6. Algeo TJ, Lyons TW (2006) Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21:PA1016. CrossRefGoogle Scholar
  7. Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318CrossRefGoogle Scholar
  8. Algeo TJ, Maynard JB (2008) Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. Geosphere 4:872–887CrossRefGoogle Scholar
  9. Algeo TJ, Rowe H (2012) Paleoceanographic applications of trace-metal concentrations data. Chem Geol 324–325:6–18CrossRefGoogle Scholar
  10. Algeo TJ, Tribovillard N (2009) Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem Geol 268:211–225CrossRefGoogle Scholar
  11. Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization and Ce oxidation. Geochim Cosmochim Acta 63:363–372CrossRefGoogle Scholar
  12. Alibo DS, Nozaki Y, Jeandel C (1999) Indium and yttrium in North Atlantic and Mediterranean waters: comparison to the Pacific data. Geochim Cosmochim Acta 63:1991–1999CrossRefGoogle Scholar
  13. Anbar AD, Creaser RA, Papanastassiou DA, Wasserburg GJ (1992) Rhenium in seawater: confirmation of generally conservative behavior. Geochim Cosmochim Acta 56:4099–4103CrossRefGoogle Scholar
  14. Andersson AJ, MacKenzie FT (2013) The marine carbon system and ocean acidification during Phanerozoic time. Geochem Perspect 2:1–227Google Scholar
  15. Andersson MP, Sakuma H, Stipp SLS (2014) Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. Langmuir 30:6129–6133CrossRefGoogle Scholar
  16. Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr 24:440–452CrossRefGoogle Scholar
  17. Andreae MO, Froelich PN (1984) Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus 38B:101–117CrossRefGoogle Scholar
  18. Andres Y, Texier AC, Le Cloirec P (2003) Rare earth element removal by microbial biosorption: a review. Environ Technol 24:1367–1375CrossRefGoogle Scholar
  19. Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263CrossRefGoogle Scholar
  20. Auger Y, Bodineau L, Leclercq S, Wartel M (1999) Some aspects of vanadium and chromium chemistry in the English Channel. Cont Shelf Res 19:2003–2018CrossRefGoogle Scholar
  21. Aurelio G, Fernández-Martínez A, Cuello GJ, Román-Ross G, Alliot I, Charlet L (2010) Structural study of selenium(IV) substitutions in calcite. Chem Geol 270:249–256CrossRefGoogle Scholar
  22. Balboni E, Morrison JM, Wang WZ, Englhard MH, Burns PC (2015) Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solutions. Geochim Cosmochim Acta 151:133–149CrossRefGoogle Scholar
  23. Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with application to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137CrossRefGoogle Scholar
  24. Bardelli F, Benvenuti M, Costagiola P, Di Benedetto F, Lattanzi P, Meneghini C, Romanelli M, Valenzano L (2011) Arsenic uptake by natural calcite: an XAS study. Geochim Cosmochim Acta 75:3011–3023CrossRefGoogle Scholar
  25. Barker SLL, Cox SF (2011) Oscillatory zoning and trace element incorporation in hydrothermal minerals: insights from calcite growth experiments. Geofluids 11:48–56CrossRefGoogle Scholar
  26. Barrat JA, Boulege J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim Cosmochim Acta 64:287–298CrossRefGoogle Scholar
  27. Barwise AJG (1990) Role of nickel and vanadium in petroleum classification. Energy Fuel 4:647–652CrossRefGoogle Scholar
  28. Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230CrossRefGoogle Scholar
  29. Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77CrossRefGoogle Scholar
  30. Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55CrossRefGoogle Scholar
  31. Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155:77–90CrossRefGoogle Scholar
  32. Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Miner Petrol 45:231–246CrossRefGoogle Scholar
  33. Bau M, Koschinsky A, Dulski P, Hein JR (1996) Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta 60:1709–1725CrossRefGoogle Scholar
  34. Bau M, Schmidt K, Pack A, Bendel V, Kraemer D (2018) The European Shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl Gechem 90:142–149CrossRefGoogle Scholar
  35. Bayon G, German CR, Burton KW, Nesbitt RW, Rogers N (2004) Sedimentary FeMn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth Planet Sci Lett 224:477–492CrossRefGoogle Scholar
  36. Behrends T, Van Cappellen P (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chem Geol 220:315–327CrossRefGoogle Scholar
  37. Behrens MK, Muratli J, Pradoux C, Wu Y, Böning P, Brumsack H-J, Goldstein SL, Haley B, Jeandel C, Paffrath R, Pena LD, Schnetger B, Pahnke K (2016) Rapid and precise analysis of rare earth elements in small volumes of seawater—method and intercomparison. Mar Chem 186:110–120CrossRefGoogle Scholar
  38. Belova DA, Lakshtanov LZ, Carneiro JF, Stipp SLS (2014) Nickel adsorption on chalk and calcite. J Contam Hydrol 170:1–9CrossRefGoogle Scholar
  39. Belzile N (1988) The fate of arsenic in sediments of the Laurentian Trough. Geochim Cosmochim Acta 52:2293–2302CrossRefGoogle Scholar
  40. Belzile N, Lebel J (1986) Capture of arsenic by pyrite in near-shore marine sediments. Chem Geol 54:279–281CrossRefGoogle Scholar
  41. Belzile N, Chen Y-W, Wang Z (2001) Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chem Geol 174:379–387CrossRefGoogle Scholar
  42. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271CrossRefGoogle Scholar
  43. Berger WH (1983) Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69:87–88CrossRefGoogle Scholar
  44. Bertine KK (1973) The deposition of molybdenum in anoxic waters. Mar Chem 1:43–53CrossRefGoogle Scholar
  45. Bertine KK, Lee DS (1983) Antimony content and speciation in the water column and interstitial waters of Saanich Inlet. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. NATO Adv. Res. Inst, Plenum, New York, pp 21–38CrossRefGoogle Scholar
  46. Bertram CJ, Elderfield H (1993) The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochim Cosmochim Acta 57:1957–1986CrossRefGoogle Scholar
  47. Bibak A, Borggaard OK (1994) Molybdenum adsorption by aluminum and iron oxides and humic acid. Soil Sci 158:323–328CrossRefGoogle Scholar
  48. Biswas KC, Woodards NA, Xu H, Barton LL (2009) Reduction of molybdate by sulfate-reducing bacteria. Biometals 22:131–139CrossRefGoogle Scholar
  49. Blanchard RL, Oakes D (1965) Relationships between uranium and radium in coastal marine shells and their environments. J Geophys Res 70:2911–2921CrossRefGoogle Scholar
  50. Boland DD, Collins RN, Glover CJ, Pyne TE, Waite DT (2014) Reduction of U(VI) by Fe(II) during the F(II)-accelerated transformation of ferrihydrite. Environ Sci Technol 48:9086–9093CrossRefGoogle Scholar
  51. Bostick BC, Fendorf S, Helz GR (2003) Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Environ Sci Technol 37:285–291CrossRefGoogle Scholar
  52. Bown J, Boye M, Baker A, Duvieillbourg E, Lacan F, Le Moigne F, Planchon F, Speich S, Nelson DS (2011) The biogeochemical cycle of dissolved cobalt in the Atlantic and the Southern Ocean south off the coast of South Africa. Mar Chem 126:193–206CrossRefGoogle Scholar
  53. Boyle EA (1981) Cadmium, zinc, copper, and barium in foraminifera tests. Earth Planet Sci Lett 53:11–35CrossRefGoogle Scholar
  54. Boyle EA, Sclater F, Edmond JM (1976) On the marine geochemistry of cadmium. Nature 263:42–44CrossRefGoogle Scholar
  55. Brady PV, Papenguth HW, Kelly JW (1999) Metal sorption to dolomite surfaces. Appl Geochem 14:69–579CrossRefGoogle Scholar
  56. Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system—1: trace elements. J Sediment Petrol 50:1219–1236Google Scholar
  57. Brannon JM, Patrick WH (1987) Fixation, transformation, and mobilization of arsenic in sediments. Environ Sci Technol 21:450–459CrossRefGoogle Scholar
  58. Braybrooke AL, Heywood BR, Jackson RA, Pitt K (2002) Parallel computational and experimental studies of the morphological modification of calcium carbonate by cobalt. J Cryst Growth 243:336–344CrossRefGoogle Scholar
  59. Breit GN, Wanty RB (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chem Geol 91:83–97CrossRefGoogle Scholar
  60. Brewer PG, Spencer DW, Robertson DE (1972) Trace element profiles from the GEOSECS-II test station in the Sargasso Sea. Earth Planet Sci Lett 16:111–116CrossRefGoogle Scholar
  61. Brooks RK, Presley BJ, Kaplan IR (1968) Trace elements in the interstitial waters of marine sediments. Geochim Cosmochim Acta 32:397–414CrossRefGoogle Scholar
  62. Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S (2003) Inhibition of bacterial U(VI) reduction by calcium. Environ Sci Technol 37:1850–1858CrossRefGoogle Scholar
  63. Bruggeman C, Maes A, Vancluysen J, Vandemussele P (2005) Selenite reduction in Boom clay: Effect of FeS2, clay minerals, and dissolved organic matter. Environ Pollut 137:209–221CrossRefGoogle Scholar
  64. Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198CrossRefGoogle Scholar
  65. Bruland KW (1989) Complexation of zinc by natural organic-ligands in the Central North Pacific. Limnol Oceanogr 34:269–285CrossRefGoogle Scholar
  66. Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577CrossRefGoogle Scholar
  67. Brumsack HJ (1986) The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic Paleoceanography, vol 21. Geological Society London Special Publications, London, pp 447–462Google Scholar
  68. Brumsack H-J (1989) Geochemistry of recent TOC-rich sediments form the Gulf of California and the Black Sea. Geol Rundsch 78:851–882CrossRefGoogle Scholar
  69. Brumsack HJ (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shales formation. Palaeogeogr Palaeoclim Palaeoecol 232:344–361CrossRefGoogle Scholar
  70. Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ Sci Technol 31:1426–1432CrossRefGoogle Scholar
  71. Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50:491–497Google Scholar
  72. Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179CrossRefGoogle Scholar
  73. Buschmann J, Sigg L (2004) Antimony(III) binding to humic substances: Influence of pH and type of humic acid. Environ Sci Technol 38:4535–4541CrossRefGoogle Scholar
  74. Byrne RH, Li B (1995) Comparative complexation behavior of the rare earths. Geochim Cosmochim Acta 59:4575–4589CrossRefGoogle Scholar
  75. Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments—implications for the geological record. Mar Geol 113:67–88CrossRefGoogle Scholar
  76. Calvert SE, Price NB (1970) Minor metal contents of recent organic-rich sediments off South West Africa. Nature 227:593–595CrossRefGoogle Scholar
  77. Calvert SE, Price NB (1997) Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean. Mar Chem 5:43–74CrossRefGoogle Scholar
  78. Cantrell KJ, Byrne RH (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim Cosmochim Acta 51:597–605CrossRefGoogle Scholar
  79. Carlsson I, Aalto H (1999) Coprecipitation of Ni with calcite: an experimental study. Mat Res Soc Symp Proc 506:621–627CrossRefGoogle Scholar
  80. Carpentier W, Sandra K, De Smet I, Brigé A, De Smet L, Van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639CrossRefGoogle Scholar
  81. Carroll SA (1993) Precipitation of Nd–Ca carbonate solid solution at 25 °C. Geochim Cosmochim Acta 57:3383–3393CrossRefGoogle Scholar
  82. Carroll SA, Bruno J, Peit J-C, Dran J-C (1992) Interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface. Radiochim Acta 58(59):245–252Google Scholar
  83. Chada VGR, Hausner DB, Strongin DR, Rouff AA, Reeder RJ (2005) Divalent Cd and Pb uptake on calcite 1014 cleavage faces: an XPS and AFM study. J Colloid Interf Sci 288:350–360CrossRefGoogle Scholar
  84. Chaillou G, Schäfer J, Anschutz P, Lavaux G, Blanc G (2003) The behaviour of arsenic in muddy sediments of The Bay of Biscay (France). Geochim Cosmochim Acta 67:2993–3003CrossRefGoogle Scholar
  85. Chaillou G, Schäfer J, Blanc G, Anschutz P (2008) Mobility of Mo, U, As, an Sb within modern turbidites. Mar Geol 254:171–179CrossRefGoogle Scholar
  86. Chakhmouradian AR, Reguir EP, Coueslan C, Yang P (2016) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Miner Petrol 110:361–377CrossRefGoogle Scholar
  87. Chakraborty S, Bardelli F, Charlet L (2010) Reactivities of Fe(II) on calcite: selenium reduction. Environ Sci Technol 44:1288–1294CrossRefGoogle Scholar
  88. Chappaz A, Gobeil C, Tessier A (2008) Sequestration mechanisms and anthropogenic inputs of rhenium in sediments from Eastern Canada lakes. Geochim Cosmochim Acta 72:6027–6036CrossRefGoogle Scholar
  89. Chaudhuri S, Cullers RS (1979) The distribution of rare-earth elements in deeply buried Gulf Coast sediments. Chem Geol 24:327–338CrossRefGoogle Scholar
  90. Chen YW, Deng TL, Filella M, Belzile N (2003) Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes. Environ Sci Technol 37:1163–1168CrossRefGoogle Scholar
  91. Cheng L, Lyman PF, Sturchio NC, Bedzyk MJ (1997) X-ray standing wave study of the surface structure of selenite anions adsorbed on calcite. Surf Sci 382:690–695CrossRefGoogle Scholar
  92. Cheng L, Sturchio NC, Woicik JC, Kemner KM, Lyman PF, Bedzyk MJ (1998) High-resolution structural study of zinc ion incorporation at the calcite cleavage surface. Surf Sci Lett 415:L976–L982CrossRefGoogle Scholar
  93. Cheng L, Fenter P, Sturchio NC, Zhong Z, Bedzyk MJ (1999) X-ray standing wave study or arsenite incorporation at the calcite surface. Geochim Cosmochim Acta 63:3153–3157CrossRefGoogle Scholar
  94. Chester R, Messiha-Hanna RG (1970) Trace element partition patterns in North Atlantic deep-sea sediments. Geochim Cosmochim Acta 34:1121–1128CrossRefGoogle Scholar
  95. Chmielowski J, Klapcinska B (1985) Bioaccumulation of germanium by Pseudomonas putida in the presence of two selected substrates. Appl Environ Microbiol 51:1099–1103Google Scholar
  96. Choppin GR (2002) Covalency in f-element bonds. J Alloy Compd 344:55–59CrossRefGoogle Scholar
  97. Clarke MB, Helz GR (2000) Metal—thiometalate transport of biologically active trace elements in sulfidic environments. 1. Experimental evidence for copper thioarsenite complexing. Environ Sci Technol 34:1477–1482CrossRefGoogle Scholar
  98. Cole PC, Eckert JM, Williams KL (1983) The determination of dissolved and particulate vanadium in sea water by X-ray fluorescence spectrometry. Anal Chim Acta 153:61–67CrossRefGoogle Scholar
  99. Collier RW (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature 309:441–444CrossRefGoogle Scholar
  100. Colodner D, Sachs J, Ravizza G, Turekian K, Edmond J, Boyle E (1993) The geochemical cycle of rhenium: a reconnaissance. Earth Planet Sci Lett 117:205–221CrossRefGoogle Scholar
  101. Colodner D, Edmund J, Boyle E (1995) Rhenium in the Black Sea: comparison with molybdenum and uranium. Earth Planet Sci Lett 131:1–15CrossRefGoogle Scholar
  102. Comans RNJ, Middelburg JJ (1987) Sorption of trace metals on calcite: applicability of the surface precipitation model. Geochim Cosmochim Acta 51:2587–2591CrossRefGoogle Scholar
  103. Compton RG, Pritchard KL (1990) Kinetics of the langmurian adsorption of CuII ions at the calcite/water interface. J Chem Soc, Faraday Trans 86:129–136CrossRefGoogle Scholar
  104. Cooke TD, Bruland KW (1987) Aquatic chemistry of selenium: evidence for biomethylation. Environ Sci Technol 21:1214–1219CrossRefGoogle Scholar
  105. Cooper DC, Picardal F, Rivera J, Talbot C (2000) Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200. Environ Sci Technol 34:100–106CrossRefGoogle Scholar
  106. Costagliola P, Bardelli F, Benvenuti M, Di Benedetto F, Lattanzi P, Romanelli M, Paolieri M, Rimondi V, Vaggelli G (2013) Arsenic-bearing calcite in natural travertines: evidence from sequential extraction, μXAS, and μXRF. Environ Sci Technol 47:6231–6238CrossRefGoogle Scholar
  107. Cowan CE, Zachara JM, Resch CT (1990) Solution ion effects on the surface exchange of selenite on calcite. Geochim Cosmochim Acta 54:2223–2234CrossRefGoogle Scholar
  108. Crecelius EA, Bothner MH, Carpenter R (1975) Geochemistries of arsenic, antimony, mercury, and related elements in sediment of Puget Sound. Environ Sci Technol 9:325–333CrossRefGoogle Scholar
  109. Crocket JH, Winchester JW (1966) Coprecipitation of zinc with calcium carbonate. Geochim Cosmochim Acta 30:1093–1109CrossRefGoogle Scholar
  110. Crusius J, Thomson J (2000) Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim Cosmochim Acta 64:2233–2242CrossRefGoogle Scholar
  111. Crusius J, Thomson J (2003) Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments. Geochim Cosmochim Acta 67:265–273CrossRefGoogle Scholar
  112. Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78CrossRefGoogle Scholar
  113. Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185CrossRefGoogle Scholar
  114. Curti E (1997) Coprecipitation of radionuclides: basic concepts, literature review and first applications (No. PSI--97-10). Paul Scherrer Institute, VilligenGoogle Scholar
  115. Curti E (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl Geochem 14:433–445CrossRefGoogle Scholar
  116. Curti E, Kulik DA, Tits J (2005) Solid solutions of trace Eu(III) in calcite: thermodynamic evaluation of experimental data over a wide range of pH and pCO2. Geochim Cosmochim Acta 69:1721–1737CrossRefGoogle Scholar
  117. Cutter GA (1978) Species determination of selenium in natural waters. Anal Chim Acta 98:59–66CrossRefGoogle Scholar
  118. Cutter GA (1982) Selenium in reducing waters. Science 217:829–831CrossRefGoogle Scholar
  119. Cutter GA (1991) Dissolved arsenic and antimony in the Black Sea. Deep Sea Res 38:825–843CrossRefGoogle Scholar
  120. Cutter BA, Bruland KW (1984) The marine biogeochemistry of selenium: a re-evaluation. Limnol Oceanogr 29:1179–1192CrossRefGoogle Scholar
  121. Cutter GA, Cutter LS (1998) Metalloids in the high latitude North Atlantic Ocean: sources and internal cycling. Mar Chem 61:25–36CrossRefGoogle Scholar
  122. Cutter GA, Cutter LS (2006) Biogeochemistry of arsenic and antimony in the North Pacific Ocean. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  123. Dardenne M (1967) Etude experimentale de la distribution de zinc dans les carbonates de calcium. Bull Bur Rech Geol Min 5:75–110Google Scholar
  124. Davis JA, Fuller CC, Cook AD (1987) A model for trace metal sorption processes at the calcite surface: adsorption of Cd2+ and subsequent solid solution formation. Geochim Cosmochim Acta 51:1477–1490CrossRefGoogle Scholar
  125. Davranche M, Pourret O, Gruau G, Dia A, Jin D, Gaertner D (2008) Competitive binding of REE to humic acids and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption. Chem Geol 247:154–170CrossRefGoogle Scholar
  126. De Baar HJW (1983) The marine geochemistry of the rare earth elements. Ph.D. thesis, Woods Hole Oceanographic Institution, p 283Google Scholar
  127. De Baar HJW, Bacon MP, Brewer PG (1983) Rare-earth distribution with a positive Ce anomaly in the Western North Atlantic Ocean. Nature 301:324–327CrossRefGoogle Scholar
  128. De Baar HJW, Bacon MP, Brewer PG, Bruland KW (1985a) Rare earth elements in the Atlantic and Pacific oceans. Geochim Cosmochim Acta 49:1943–1959CrossRefGoogle Scholar
  129. De Baar HJW, Brewer PG, Bacon MP (1985b) Anomalies in rare earth distributions in seawater: Gd and Tb. Geochim Cosmochim Acta 49:1961–1969CrossRefGoogle Scholar
  130. De Baar HJW, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distribution in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52:1203–1219CrossRefGoogle Scholar
  131. De Carlo TM, Gaetani GA, Holcomb M, Cohen AL (2015) Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochim Cosmochim Acta 162:151–165CrossRefGoogle Scholar
  132. de Nooijer LJ, Reichart GJ, Dueñas Bohórquez ADB, Wolthers M, Ernst SR, Mason PRD, Van der Zwaan GJ (2007) Copper incorporation in foraminiferal calcite: results from culturing experiments. Biogeosciences 4:9619–9991CrossRefGoogle Scholar
  133. Delaney ML, Boyle EA (1982) Uranium and thorium isotope concentrations in foraminiferal calcite. Earth Planet Sci Lett 62:258–262CrossRefGoogle Scholar
  134. Di Benedetto F, Costagiola P, Benvenuti C, Lattanzi P, Romanelli M, Tanelli G (2006) Arsenic incorporation in natural calcite lattice: evidence from electron spin echo spectroscopy. Earth Planet Sci Lett 246:458–465CrossRefGoogle Scholar
  135. Dolor MK, Gilmour CC, Helz GR (2009) Distinct microbial behavior of Re compared to Tc: evidence against microbial Re fixation in aquatic sediments. Geomicrobiol J 26:470–483CrossRefGoogle Scholar
  136. Donat JR, Lao KA, Bruland KW (1994) Speciation of dissolved copper and nickel in South San Franscisco Bay: a multi-method approach. Anal Chim Acta 284:547–571CrossRefGoogle Scholar
  137. Drake H, Mathurin FA, Zack T, Schäfer T (2017) Incorporation of trace elements into calcite precipitated from deep anoxic groundwater in fractured granitoid rocks. Proc Earth Planet Sci 17:841–844CrossRefGoogle Scholar
  138. Drake H, Mathurin FA, Zack T, Schäfer T, Roberts NMW, Whitehouse M, Karlsson A, Broman C, Aström ME (2018) Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ Sci Techol 52:493–502CrossRefGoogle Scholar
  139. Dromgoole EL, Walter L (1990) Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry. Chem Geol 81:311–336CrossRefGoogle Scholar
  140. Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchand JC, Monteil-Rivera F, Domunceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioact 70:61–72CrossRefGoogle Scholar
  141. Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB, Miller JM, Prospero JM, Arimoto R, Church TM, Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudino A, Tokos JJ, Tsunogai S, Wollast R, Zhou M (1991) The atmospheric input of trace species to the world ocean. Glob Biogeochem Cycl 5:193–259CrossRefGoogle Scholar
  142. Duchart P, Calvert SE, Price NB (1973) Distribution of trace metals in the pore waters of shallow water marine sediments. Limnol Oceanogr 18:605–610CrossRefGoogle Scholar
  143. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547CrossRefGoogle Scholar
  144. Dupont CL, Buck KN, Palenik B, Barbeau K (2010) Nickel utilization in phytoplankton assemblages from contrasting ocean regimes. Deep Sea Res I 57:553–566CrossRefGoogle Scholar
  145. Edenborn HM, Belzile N, Mucci A, Lebel J, Silverberg N (1986) Observations on the diagenetic behavior of arsenic in a deep coastal sediment. Biogeochemistry 2:359–376CrossRefGoogle Scholar
  146. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219CrossRefGoogle Scholar
  147. Elderfield H, Sholkovitz ER (1987) Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet Sci Lett 82:280–288CrossRefGoogle Scholar
  148. Elderfield H, Hawkesworth CJ, Greaves MJ, Calvert SE (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim Cosmochim Acta 45:513–528CrossRefGoogle Scholar
  149. Elderfield H, Whitfield M, Burton JD, Bacin MP, Liss PS (1988) The oceanic chemistry of the rare-earth elements. Philos Trans R Soc Lond A 325:105–126CrossRefGoogle Scholar
  150. Ellwood MJ, van den Berg CM (2001) Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar Chem 75:33–47CrossRefGoogle Scholar
  151. Elzinga EJ, Reeder RJ (2002) X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim Cosmochim Acta 66:3943–3954CrossRefGoogle Scholar
  152. Elzinga EJ, Reeder RJ, Withers SH, Peale RE, Mason RA, Beck KM, Hess WP (2002) EXAFS study of rare-earth element coordination in calcite. Geochim Cosmochim Acta 66:2875–2885CrossRefGoogle Scholar
  153. Emerson SR, Huested SS (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar Chem 34:177–196CrossRefGoogle Scholar
  154. Emerson HP, Zengotita F, Richmann M, Katsenovich Y, Reed DT, Dittrich TM (2018) Retention of neodymium by dolomite at variable ionic strenth as probed by batch and column experiments. J Environ Radioact 190–191:89–96CrossRefGoogle Scholar
  155. Endrizzi F, Rao L (2014) Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(U2)(CO3)3]4− and the effect on the extraction of uranium from seawater. Chem Eur J 20:14499–14506CrossRefGoogle Scholar
  156. Fabricand BP, Sawyer RR, Ungar SG, Adler S (1962) Trace metal concentrations in the ocean by atomic absorption spectroscopy. Geochim Cosmochim Acta 26:1023–1027CrossRefGoogle Scholar
  157. Fernández-González A, Prieto M, Putnis A, López-Andrés S (1999) Concentric zoning patterns in crystallizing (Cd, Ca)CO3 solid solutions from aqueous solutions. Miner Mag 63:331–343CrossRefGoogle Scholar
  158. Fernández-Martínez A, Román-Ross G, Cuello GJ, Turrillas X, Charlet L, Johnson MR, Bardelli F (2006) Arsenic uptake by gypsum and calcite: Modelling and probing by neutron and X-ray scattering. Phys B 385–386:935–937CrossRefGoogle Scholar
  159. Filella M, Belzile N, Chen YW (2002a) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci Rev 59:265–285CrossRefGoogle Scholar
  160. Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci Rev 57:125–176CrossRefGoogle Scholar
  161. Filella M, Belzile N, Chen YW (2007) Antimony in the environment: a review focused on natural waters III. Microbiota relevant interactions. Earth Sci Rev 80:195–217CrossRefGoogle Scholar
  162. Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ Chem 6:95–105CrossRefGoogle Scholar
  163. Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sedim Contam 11:339–357CrossRefGoogle Scholar
  164. Fisher A, Kara D (2016) Determination of rare earth elements in natural water samples—a review of sample separation, preconcentrations and direct methodologies. Anal Chim Acta 935:1–29CrossRefGoogle Scholar
  165. Franklin ML, Morse JW (1981) The interaction of copper with the surface of calcite. Ocean Sci Eng 7:147–174Google Scholar
  166. Franklin ML, Morse JW (1983) The interaction of manganese(II) with the surface of calcite in dilute solutions and seawater. Mar Chem 12:241–254CrossRefGoogle Scholar
  167. Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Shu-Mei WL, Krupka KM (2000) Reduction of U (VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64:3085–3098CrossRefGoogle Scholar
  168. Freslon N, Bayon G, Toucanne S, Bermall S, Bollinger C, Chéron S, Etoubleau J, Germain Y, Khripounoff A, Ponzervera E, Rouget M-L (2014) Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochim Cosmochim Acta 140:177–198CrossRefGoogle Scholar
  169. Frimmel EH (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353CrossRefGoogle Scholar
  170. Froelich PN, Andreae MO (1981) The marine geochemistry of germanium: Ekasilicon. Science 213:205–207CrossRefGoogle Scholar
  171. Froelich P, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090CrossRefGoogle Scholar
  172. Fu G, Allen HE, Cowan CE (1991) Adsorption of cadmium and copper by manganese oxides. Soil Sci 152:72–81CrossRefGoogle Scholar
  173. Gabitov RI, Gaetani GA, Watson EB, Cohen AL, Ehrlich HL (2008) Experimental determination of growth rate effect on U6+ and Mg2+ partitioning between aragonite and fluid at elevated U6+ concentration. Geochim Coscmochim Acta 72:4058–4068CrossRefGoogle Scholar
  174. Gamble LW, Jones WH (1955) Determination of trace metals in petroleum. Anal Chem 27:1456–1459CrossRefGoogle Scholar
  175. García-Sánchez A, Alvarez-Ayuso E (2002) Sorption of Zn, Cd, and Cr on calcite. Application to purification of industrial wastewaters. Miner Eng 15:539–547CrossRefGoogle Scholar
  176. Garcia-Solsona E, Jeandel C, Labatut M, Lacan F, Vance D, Chavagnac V, Pradoux C (2014) Rare earth elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic. Geochim Cosmochim Acta 125:351–372CrossRefGoogle Scholar
  177. Gendron A, Silverberg N, Sundby B, Lebel J (1996) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747CrossRefGoogle Scholar
  178. German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53:2561–2571CrossRefGoogle Scholar
  179. German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography. CrossRefGoogle Scholar
  180. German CR, Holliday BP, Elderfield H (1991) Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta 55:3553–3558CrossRefGoogle Scholar
  181. German CR, Masuzawa T, Greaves MJ, Elderfield M, Edmond JM (1995) Dissolved rare earth elements in the Southern Ocean: Ce oxidation and the influence of hydrography. Geochim Cosmochim Acta 59:1551–1558CrossRefGoogle Scholar
  182. Gobeil C, MacDonald RW, Sundby B (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim Cosmochim Acta 61:4647–4654CrossRefGoogle Scholar
  183. Goldberg ED (1954) Marine geochemistry 1. Chemical scavengers of the sea. J Geol 62:249–265CrossRefGoogle Scholar
  184. Goldberg ED (1957) Biogeochemistry of trace metals. Geol Soc Am Mem 67:345–358Google Scholar
  185. Goldberg S, Forster HS (1998) Factors affecting molybdenum adsorption by soils and minerals. Soil Sci 163:109–114CrossRefGoogle Scholar
  186. Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption by oxides, clay minerals, and soils. Soil Sci Soc Am J 60:425–432CrossRefGoogle Scholar
  187. Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89:35–47CrossRefGoogle Scholar
  188. Gomes del Rio JA, Morando PJ, Cicerone DS (2004) Natural materials for treatment of industrial effects: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments. J Environ Manag 71:169–177CrossRefGoogle Scholar
  189. Gonzalez-Lopez J, Ruiz-Hernandez SE, Fernandez-Gonzalez A, Jiminez A, de Leeuw NH, Grau-Crespo R (2014) Cobalt incorporation in calcite: Thermochemistry of (Ca, Co)CO3 solid solutions from density functional theory simulations. Geochim Cosmochim Acta 142:205–216CrossRefGoogle Scholar
  190. Greaves MJ, Statham PJ, Elderfield H (1994) Rare earth element mobilization from marine atmospheric dust into seawater. Mar Chem 46:255–260CrossRefGoogle Scholar
  191. Gromet LP, Haskin LA, Korotev DL, Dymek RF (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482CrossRefGoogle Scholar
  192. Guo X, Wu Z, He M, Meng X, Jin X, Qiu N, Zhang J (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater 276:339–345CrossRefGoogle Scholar
  193. Haley BA, Klinkhammer GP (2003) Complete separation of rare earth elements from small volume seawater samples by automated ion chromatography: method development and application to benthic flux. Mar Chem 82:197–220CrossRefGoogle Scholar
  194. Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochim Cosmochim Acta 68:1265–1279CrossRefGoogle Scholar
  195. Hamelin B, Bard E, Zindler A, Fairbanks RG (1991) 234U/238U mass spectrometry of corals: how accurate is the U–Th age of the last interglacial period? Earth Planet. Sci Lett 106:169–180Google Scholar
  196. Hammond DE, McManus J, Berelson WM, Meredith C, Klinkhammer GP, Coale KH (2000) Diagenetic fractionation of Ge and Si in reducing sediments: The missing Ge sink and a possible mechanism to cause glacial/interglacial variations in oceanic Ge/Si. Geochim Cosmochim Acta 64:2453–2465CrossRefGoogle Scholar
  197. Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175:495–508CrossRefGoogle Scholar
  198. Harstad AO, Stipp SLS (2007) Calcite dissolution: effects of trace cations naturally present in Iceland spar calcites. Geochim Cosmochim Acta 71:56–70CrossRefGoogle Scholar
  199. Haskin LA, Wildeman TR, Frey FA, Collins KA, Keedy CR, Haskin MA (1966) Rare earths in sediments. J Geophys Res 71:6091–6105CrossRefGoogle Scholar
  200. Hastings DW, Emerson SR, Erez J, Nelson BK (1996) Vanadium in foraminiferal calcite: Evaluation of a method to determine paleo-seawater vanadium concentrations. Geochim Cosmochim Acta 60:3701–3715CrossRefGoogle Scholar
  201. Hathorne EC, Stichel T, Brück B, Frank M (2015) Rare earth element distribution in the Atlantic sector of the Southern Ocean: the balance between particle scavenging and vertical supply. Mar Chem 177:157–171CrossRefGoogle Scholar
  202. Hausinger RP (1997) Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–286CrossRefGoogle Scholar
  203. Heberling F, Vinograd VL, Polly R, Gale JD, Heck S, Rothe J, Bosbach D, Geckeis H, Winkler B (2014) A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite. Geochim Cosmochim Acta 134:16–38CrossRefGoogle Scholar
  204. Heggie D, Lewis T (1984) Cobalt in pore waters of marine sediments. Nature 311:453–455CrossRefGoogle Scholar
  205. Hellebrandt SE, Hofmann S, Jordan N, Barkleit A, Schmidt M (2016) Incorporation of Eu(III) into calcite under recrystallization conditions. Sci Rep 6:33137CrossRefGoogle Scholar
  206. Helz GR, Adelson JM (2013) Trace element profiles in sediments as proxies of dead zone history; rhenium compared to molybdenum. Environ Sci Technol 47:1257–1264CrossRefGoogle Scholar
  207. Helz GR, Dolor MK (2012) What regulates rhenium deposition in euxinic basins? Chem Geol 304–305:131–141CrossRefGoogle Scholar
  208. Helz GR, Miller CV, Charnick JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60:3631–3642CrossRefGoogle Scholar
  209. Helz GR, Valerio MS, Capps NE (2002) Antimony speciation in alkaline sulfide solutions: role of zerovalent sulfur. Environ Sci Technol 36:943–948CrossRefGoogle Scholar
  210. Helz GR, Bura-Nakic E, Mikac N, Ciglenecki I (2011) New model for molybdenum behavior in euxinic waters. Chem Geol 284:323–332CrossRefGoogle Scholar
  211. Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 1–32Google Scholar
  212. Herrmann AD, Kendall B, Algeo TJ, Gordon GW, Wasylenki LE, Anbar AD (2012) Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies: Significance for use of δ98Mo as a global marine redox proxy. Chem Geol 324–325:87–98CrossRefGoogle Scholar
  213. Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277:126–136CrossRefGoogle Scholar
  214. Himmler T, Haley BA, Torres ME, Klinkhammer GP, Bohrmann G, Peckmann J (2013) Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Mar Lett 33:369–379CrossRefGoogle Scholar
  215. Hirst DM (1962) The geochemistry of modern sediments from the Guld of Paria—II the location and distribution of trace elements. Geochim Cosmochim Acta 26:1147–1187CrossRefGoogle Scholar
  216. Hitchcock RD, Starr WL (1954) Spectrographic techniques as applied to the analysis of sea water. Appl Spectr 8:5–17CrossRefGoogle Scholar
  217. Hodgson GW (1954) Vanadium, nickel, and iron trace metals in crude oils of western Canada. Am Assoc Petrol Geol Bull 38:2537–2554Google Scholar
  218. Hoffmann U, Stipp SLS (2001) The behavior of Ni2+ on calcite surfaces. Geochim Cosmochim Acta 65:4131–4139CrossRefGoogle Scholar
  219. Holland HD (1979) Metals in black shales; a reassessment. Econ Geol 74:1676–1680CrossRefGoogle Scholar
  220. Holser WT (1997) Evaluation of the application of rare-earth elements to paleoceanography. Palaegeogr Palaeoclim 132:309–323CrossRefGoogle Scholar
  221. Hood AvS, Wallace MW (2018) Neoproterozoic marine carbonates and their paleoceanographic significance. Global Planet Change 160:28–45CrossRefGoogle Scholar
  222. Hood AsV, Planavsky NJ, Wallace MW, Wang X (2018) The effects of diagenesis on geochemical paleoproxies in sedimentary carbonates. Geochim Cosmochim Ac 232:265–287CrossRefGoogle Scholar
  223. Horner TJ, Rickaby REM, Henderson GM (2011) Isotopic fractionation of cadmium into calcite. Earth Planet Sci Lett 312:243–253CrossRefGoogle Scholar
  224. Hu M, Yang Y, Martin J-M, Yin K, Marrison PJ (1996) Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton. Mar Environ Res 44:225–231CrossRefGoogle Scholar
  225. Hua B, Deng B, Thornton EC, Yang J, Amonette JE (2006a) Incorporation of chromate into calcium carbonate structure during coprecipitation. Water Air Soil Poll 179:381–390CrossRefGoogle Scholar
  226. Hua B, Xu H, Terry J, Deng B (2006b) Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems. Eviron Sci Technol 40:4666–4671CrossRefGoogle Scholar
  227. Huang J-H, Huang F, Evans L, Glasauer S (2015) Vanadium: global (bio)geochemistry. Chem Geol 417:68–89CrossRefGoogle Scholar
  228. Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702CrossRefGoogle Scholar
  229. Jacobs L, Emerson S (1982) Trace metal solubility in an anoxic fjord. Earth Planet Sci Lett 60:237–252CrossRefGoogle Scholar
  230. Jacobs L, Emerson S, Skei J (1985) Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin, Framvaren Fjord, Norway. Geochim Cosmochim Acta 49:1433–1444CrossRefGoogle Scholar
  231. Jeandel C, Minister JF (1987) Chromium behavior in the ocean: Global versus regional processes. Glob Biogeochem Cycl 1:131–154CrossRefGoogle Scholar
  232. Jeandel C, Marchal O, Lam PJ, Anderson RF (2015) GEOTRACES synthesis and modeling: the role of particles in the marine biogeochemical cycles of trace elements and their isotopes. Proc Oceanogr 133:1–78CrossRefGoogle Scholar
  233. Jochum KP, Scholz D, Stoll B, Weis U, Wilson SA, Yang Q, Schwalb A, Börner N, Jacob DE, Andraea MO (2012) Accurate trace element analysis of speleothems and biogenic calcium carbonate by LA–ICP–MS. Chem Geol 318–319:31–44CrossRefGoogle Scholar
  234. Johannesson KH, Telfeyan K, Chevis DA, Rosenheim BE, Leybourne MI (2014) Rare earth elements in stromatolites—1 Evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. In: Dilek Y, Furnes H (eds) Evolution of Archean crust and early life, vol 7. Modern Approaches in Solid Earth Sciences. Springer, Dordrecht, pp 385–411CrossRefGoogle Scholar
  235. Johnson KS, Stout PM, Berelson WM, Sakamoto-Arnold CM (1988) Cobalt and copper distributions in the waters of Santa Monica Basin, California. Nature 332:527–530CrossRefGoogle Scholar
  236. Jørgensen BB, Kasten S (2006) Sulfur cycling and methane oxidation. In: Zabel M, Schulz H (eds) Marine biogeochemistry. Springer, Berlin, Heidelberg, pp 271–310CrossRefGoogle Scholar
  237. Jung H-S, Lee C-B, Cho Y-G, Kang J-K (1996) A mechanism for the enrichment of Cu and depletion of Mn in anoxic marine sediments, Banweol Intertidal Flat, Korea. Mar Poll Bull 32:782–787CrossRefGoogle Scholar
  238. Kappel S, Boulyga SF, Dorta L, Günther D, Hattendorf B, Koffler D, Laaha G, Leisch F, Prohaska T (2013) Evaluation strategies for isotope ratio measurements of single particles by LA–MC–ICPMS. Anal Bioanal Chem 405:2943–2955CrossRefGoogle Scholar
  239. Karchmer JH, Gunn EL (1952) Determination of trace metals in petroleum fractions. Anal Chem 24:1733–1741CrossRefGoogle Scholar
  240. Katsikopoulos D, Fernandez-Gonzalez A, Prieto AC, Prieto M (2008) Co-crystallization of Co(II) with calcite: Implications for the mobility of cobalt in aqueous environments. Chem Geol 254:87–100CrossRefGoogle Scholar
  241. Kelly SD, Newville MG, Cheng L, Kemner KM, Sutton SR, Fenter P, Sturchio NC, Spötl C (2003) Uranyl incorporation in natural calcite. Environ Sci Technol 37:1284–1287CrossRefGoogle Scholar
  242. Kelly SD, Rasbury ET, Chattopadhyay S, Kropf AJ, Kemner KM (2006) Evidence of a stable uranyl site in ancient organic-rich calcite. Environ Sci Technol 40:2262–2268CrossRefGoogle Scholar
  243. Kelly SD, Kemner KM, Carley J, Criddle C, Jardine PM, Marsh TL, Phillips D, Watson D, Wu W-M (2008) Speciation of uranium in sediments before and after in situ biostimulation. Environ Sci Technol 42:1558–1564CrossRefGoogle Scholar
  244. Keul N, Langer G, De Nooijer LJ, Nehrke G, Reichart GJ, Bijma J (2013) Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem Geophys Geosyst 14:102–111CrossRefGoogle Scholar
  245. Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S (2001) Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng 91:590–595CrossRefGoogle Scholar
  246. Kim J-H, Torres ME, Haley BA, Kastner M, Pohlman JW, Riedel M, Lee Y-J (2012) The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem Geol 291:152–165CrossRefGoogle Scholar
  247. Kim I, Kim G, Choy E-Y (2015) The significant inputs of trace elements and rare earth elements from melting glaciers in Antarctic coastal waters. Polar Res. CrossRefGoogle Scholar
  248. King SL, Froelich PN, Jahnke RA (2000) Early diagenesis of germanium in sediments of the Antarctic South Atlantic: in search of the missing Ge sink. Geochim Cosmochim Acta 64:1375–1390CrossRefGoogle Scholar
  249. Kinsman DJJ (1978) Interpretation of Sr2+ concentrations in carbonate minerals and rocks. J Sedim Res 39:486–508Google Scholar
  250. Kitano Y, Oomori T (1971) The coprecipitation of uranium with calcium carbonate. J Oceanogr Soc Jpn 27:32–42CrossRefGoogle Scholar
  251. Kitano Y, Kanamori N, Fujiyoshi R (1978a) Distribution of cadmium between calcium carbonate and solution (part 1) “Ca (HCO3)2+Cd2++ bipyridine & #xF0E0; carbonate” system. Geochem J 12:137–145CrossRefGoogle Scholar
  252. Kitano Y, Kanamori N, Fujioshi R (1978b) Distribution of cadmium between calcium carbonate and solution (part 2) “Ca(HCO3)2+Cd2++NaCl & #xF0E0; carbonate” system. Geochem J 12:147–151CrossRefGoogle Scholar
  253. Kitano Y, Okumura M, Idogaki M (1980) Abnormal behaviors of copper (II) and zinc ions in parent solution at the early stage of calcite formation. Geochem J 14:167–175CrossRefGoogle Scholar
  254. Kjeltens JT, Pol A, Reimann J, Op den Camp HJM (2014) PPQ- dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183CrossRefGoogle Scholar
  255. Klinkhammer G (1980) Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results. Earth Planet Sci Lett 49:80–101CrossRefGoogle Scholar
  256. Klinkhammer G, Elderfield H, Hudson A (1983) Rare earth elements in seawater near hydrothermal vents. Nature 305:185–188CrossRefGoogle Scholar
  257. Klungness GD, Byrne RH (2000) Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength. Polyhedron 19:99–107CrossRefGoogle Scholar
  258. Knauer GA, Martin JH, Gordon RM (1982) Cobalt in north-east Pacific waters. Nature 297:49–51CrossRefGoogle Scholar
  259. Koeppenkastrop D, De Carlo EH (1993) Uptake of rare earth elements from solution by metal oxides. Environ Sci Technol 27:1796–1802CrossRefGoogle Scholar
  260. Koide M, Hodge VF, Yang JS, Stallard M, Goldberg EG, Calhoun J, Bertine KK (1986) Some comparative marine chemistries of rhenium, gold, silver and molybdenum. Appl Geochem 1:705–714CrossRefGoogle Scholar
  261. Koide M, Hodge VF, Yang JS, Goldberg ED (1987) Determination of rhenium in marine waters and sediments by graphite furnace atomic absorption spectroscopy. Anal Chem 59:1802–1805CrossRefGoogle Scholar
  262. Kornicker WA, Morse JW, Damasceno RN (1985) The chemistry of Co2+ interaction with calcite and aragonite surfaces. Chem Geol 53:229–236CrossRefGoogle Scholar
  263. Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351CrossRefGoogle Scholar
  264. Krauskopf KB (1956) Factors controlling the concentrations of thirteen rare metals in sea-water. Geochim Cosmochim Acta 9:1–32CrossRefGoogle Scholar
  265. Kremling K (1983) The behavior of Zn, Cd, Cu, Ni Co, Fe, and Mn in anoxic Baltic waters. Mar Chem 13:87–108CrossRefGoogle Scholar
  266. Ku TL, Knauss KG, Matthieu GG (1977) Uranium in the open ocean: concentration and isotopic composition. Deep Sea Res 11:1005–1018CrossRefGoogle Scholar
  267. Labrenz M, Druschel GK, Thomson-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747CrossRefGoogle Scholar
  268. Lakshtanov LZ, Stipp SLS (2004) Experimental study of europium (III) coprecipitation with calcite. Geochim Cosmochim Acta 68:819–827CrossRefGoogle Scholar
  269. Lakshtanov LZ, Stipp SLS (2007) Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim Cosmochim Acta 71:3686–3697CrossRefGoogle Scholar
  270. Lamble GM, Lee JF, Staudt WJ, Reeder RJ (1995) Structural studies of selenate incorporation into calcite crystals. Phys B 208:589–590CrossRefGoogle Scholar
  271. Lamble GM, Reeder RJ, Northrup PA (1997) Charaterization of heavy metal incorporation in calcite by XAFS spectroscopy. J Phys IV Fr 7:793–797CrossRefGoogle Scholar
  272. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. SEPM Spec Publ 28:87–110Google Scholar
  273. Large RR, Halpin JA, Danyushevsky LV, Maslennikov VV, Bull SW, Long JA, Gregory DD, Lounejeva E, Lyons TW, Sack PJ, McGoldrick PJ, Claver CR (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett 389:209–220CrossRefGoogle Scholar
  274. Lazar B, Enmar R, Schossberger M, Bar-Matthews M, Halicz L, Stein M (2004) Diagenetic effects on the distribution of uranium in live and Holocene corals from the Gulf of Aqaba. Geochim Cosmochim Acta 68:4583–4593CrossRefGoogle Scholar
  275. Le Riche HH (1959) The distribution of certain trace elements in the Lower Lias of southern England. Geochim Cosmochim Acta 16:101–122CrossRefGoogle Scholar
  276. Lee JH, Byrne RH (1992) Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim Cosmochim Acta 56:1127–1137CrossRefGoogle Scholar
  277. Lee JH, Byrne RH (1993) Complexation of trivalent rare earth elements (Ce, Eu, Gs, Tb, Yb) by carbonate ions. Geochim Cosmochim Acta 57:295–302CrossRefGoogle Scholar
  278. Lee YJ, Reeder R (2006) The role of citrate and phthalate during Co(II) coprecipitation with calcite. Geochim Cosmochim Acta 70:2253–2263CrossRefGoogle Scholar
  279. Lee YJ, Elzinga EJ, Reeder DJ (2005) Cu(II) adsorption at the calcite-water interface in the presence of natural organic matter: kinetic studies and molecular-scale characterization. Geochim Cosmochim Acta 69:49–61CrossRefGoogle Scholar
  280. Legeleux F, Reyss J-L, Bonte P, Organo C (1994) Concomitant enrichments of uranium, molybdenum and arsenic in suboxic continental margin sediments. Oceanol Acta 1:417–429Google Scholar
  281. Lehr CR, Kashyap DR, McDermott TR (2007) New insights into microbial oxidation of antimony and arsenic. Appl Environ Microbiol 73:2386–2389CrossRefGoogle Scholar
  282. Lerche D, Nozaki Y (1998) Rare earth elements of sinking particulate matter in the Japan Trench. Earth Planet Sci Lett 159:71–86CrossRefGoogle Scholar
  283. Leuz A-K, Mönch H, Johnson CA (2006) Sorption of Sb(III) and Sb(V) to goethite: Influence on Sb(III) oxidation and mobilization. Environ Sci Technol 40:7227–7282Google Scholar
  284. Lewan MD, Maynard JB (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim Cosmochim Acta 46:2547–2560CrossRefGoogle Scholar
  285. Lewis BL, Andreae MO, Froelich PN (1989) Sources and sinks of methylgermanium in natural waters. Mar Chem 27:179–200CrossRefGoogle Scholar
  286. Leybourne MI, Johannesson KH (2008) Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE + Y patterns in the surface environment. Geochim Cosmochim Acta 72:5962–5983CrossRefGoogle Scholar
  287. Leyva AG, Marrero J, Smichowski P, Cicerone D (2001) Sorption of antimony onto hydroxyapatite. Environ Sci Technol 35:3669–3675CrossRefGoogle Scholar
  288. Liger E, Charlet L, Van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939–2955CrossRefGoogle Scholar
  289. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425CrossRefGoogle Scholar
  290. Loges A, Wagner T, Barth M, Bau M, Göb S, Markl G (2012) Negative Ce anomalies in Mn oxides: the role of Ce4+ mobility during water-mineral interaction. Geochim Cosmochim Acta 86:296–317CrossRefGoogle Scholar
  291. Lorens RS (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim Cosmochim Acta 45:553–561CrossRefGoogle Scholar
  292. Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290CrossRefGoogle Scholar
  293. Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856Google Scholar
  294. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  295. Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53CrossRefGoogle Scholar
  296. Lu Y, Sun X, Xu H, Konishi H, Lin Z, Xu L, Chen T, Hao X, Lu H, Peckmann J (2018) Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea. Am Miner 103:720–734CrossRefGoogle Scholar
  297. Luo Y-R, Byrne EH (2004) Carbonate complexation of yttrium and the rare earth elements in natural waters. Geochim Cosmochim Acta 68:691–699CrossRefGoogle Scholar
  298. Luo W, Guo B (2009) Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions. Environ Sci Technol 43:152–156CrossRefGoogle Scholar
  299. Luo Z, Wang J, Jin X, Wan L, Wang Y, Chen H, Shan W, Xiong Y (2015) Brown algae based new sorption material for fractionary recovery of molybdenum and rhenium from wastewater. Chem Eng J 273:231–239CrossRefGoogle Scholar
  300. Lyalikova NN, Yurkova NA (1992) Role of microorganisms in vanadium concentration and dispersion. Geomicrobiol J 10:15–26CrossRefGoogle Scholar
  301. Maher W, Butler E (1988) Arsenic in the marine environment. Appl Organomet Chem 2:191–214CrossRefGoogle Scholar
  302. Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131CrossRefGoogle Scholar
  303. Marques Fernandes M, Schmidt M, Stumpf T, Walther C, Bosbach D, Klenze R, Fanghänel T (2008) Site-selective time-resolved laser fluorescence spectroscopy of Eu3+ in calcite. J Coll Interf Sci 321:323–331CrossRefGoogle Scholar
  304. Martin JM, Whitfield M (1983) The significance of the river input of chemical elements to the ocean. Trace metals in sea water. Springer, New York, pp 265–296CrossRefGoogle Scholar
  305. Martin JM, Hogdahl O, Philippot JC (1976) Rare earth element supply to the Ocean. J Geophys Res 81:3119–3124CrossRefGoogle Scholar
  306. Martin-Garin A, Van Cappellen P, Charlet L (2003) Aqueous cadmium uptake by calcite: A stirred flow-through reactor study. Geochim Cosmochim Acta 67:2763–2774CrossRefGoogle Scholar
  307. Maset ER, Sidhu SH, Fisher A, Heydon A, Worsfold PJ, Cartwright AJ, Keith-Roach MJ (2006) Effect of organic Co-contaminants on techneticum and rhenium speciation and solubility under reducing conditions. Environ Sci Technol 40:5472–5477CrossRefGoogle Scholar
  308. Maskenskaya OM, Drake H, Mathurin FA, Åström ME (2015) The role of carbonate complexes and crystal habit on rare earth element uptake in low-temperature calcite in fractured crystalline rock. Chem Geol 391:100–110CrossRefGoogle Scholar
  309. Masuzawa T, Koyama M (1989) Settling particles with positive Ce anomalies from the Japan Sea. Geophys Res Lett 16:503–506CrossRefGoogle Scholar
  310. McBride MB (1979) Chemisorption and precipitation of Mn2+ at CaCO3 surfaces. Soil Sci Soc Am J 41:693–698CrossRefGoogle Scholar
  311. McBride MB (1980) Chemisorption of Cd2+ on calcite surfaces. Soil Sci Soc Am J 44:26–28CrossRefGoogle Scholar
  312. McKenzie RM (1983) The adsorption of molybdenum on oxide surfaces. Aust J Soil Res 21:505–513CrossRefGoogle Scholar
  313. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosys. CrossRefGoogle Scholar
  314. McManus J, Hammond DE, Cummins K, Klinkhammer GP, Berelson WM (2003) Diagenetic Ge-Si fractionation in continental margin environments: Further evidence for a nonopal Ge sink. Geochim Cosmochim Acta 67:4545–4557CrossRefGoogle Scholar
  315. McManus J, Berelson WM, Klinkhammer GP, Hammond DE, Holm C (2005) Authigenic uranium: relationship to oxygen penetration and organic carbon rain. Geochim Cosmochim Acta 69:95–108CrossRefGoogle Scholar
  316. McManus J, Berelson WM, Severmann S, Poulson RL, Hammond DE, Klinkhammer GP, Holm G (2006) Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim Cosmochim Acta 70:4643–4662CrossRefGoogle Scholar
  317. Measures CI, Burton JD (1980) The vertical distribution and oxidation states of dissolved selenium in the Northeast Atlantic Ocean and their relationship to biological processes. Earth Planet Sci Lett 46:385–396CrossRefGoogle Scholar
  318. Mecherri OM, Budiman-Sastrowardoyo P, Rouchaud J-C, Federoff M (1990) Study of neodymium sorption on orthose and calcite for radionuclide migration modelling in groundwater. Radiochim Acta 50:160–175Google Scholar
  319. Meece DE, Benninger LK (1993) The coprecipitation of Pu and other radionuclides with CaCO3. Geochim Coscmochim Acta 57:1447–1458CrossRefGoogle Scholar
  320. Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279CrossRefGoogle Scholar
  321. Middelburg JJ, Hoede D, Van der Sloot HA, Van der Weijden CH, Wijkstra J (1988) Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochim Cosmochim Acta 52:2871–2878CrossRefGoogle Scholar
  322. Miller CA, Peucker-Ehrenbrink B, Walker BD, Marcantonio F (2011) Re-assessing the surface cycling of molybdenum and rhenium. Geochim Cosmochim Acta 75:7146–7179CrossRefGoogle Scholar
  323. Millero FJ (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim Cosmochim Acta 56:3123–3132CrossRefGoogle Scholar
  324. Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341CrossRefGoogle Scholar
  325. Milner OI, Glass JR, Kirchner JP, Yurick AN (1952) Determination of trace metals in crudes and other petroleum oils. Anal Chem 24:1728–1732CrossRefGoogle Scholar
  326. Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59:2025–2042CrossRefGoogle Scholar
  327. Moffett JW (1990) Microbially mediated cerium oxidation in seawater. Nature 345:421–423CrossRefGoogle Scholar
  328. Möller P, Bau M (1993) Rare earth patterns with positive Ce anomaly in alkaline waters from Lake Van, Turkey. Earth Planet Sci Lett 117:671–676CrossRefGoogle Scholar
  329. Monteil-Rivera F, Fedoroff M, Jeanjean J, Mineral L, Barthes M-G, Dumonceau J (2000) Sorption of selenite (SeO3 2−) on hydroxyapatite: an exchange process. J Colloid Interf Sci 221:291–300CrossRefGoogle Scholar
  330. Moore JN, Ficklin WH, Johns C (1988) Partitioning of arsenic and metals in reducing sulfidic sediments. Environ Sci Technol 22:432–437CrossRefGoogle Scholar
  331. Moore RM, Webb R, Tokarczyk R, Wever R (1996) Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. J Geophys Res 101:20899–20908CrossRefGoogle Scholar
  332. Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947CrossRefGoogle Scholar
  333. Morel FM, Hudson RJ, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742–1755CrossRefGoogle Scholar
  334. Morford JL, Emerson SR (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63:1735–1750CrossRefGoogle Scholar
  335. Morford JL, Emerson SR, Breckel EJ, Kim SH (2005) Diagenesis of oxyanoins (V, U, R, and Mo) in pore waters and sediments from a continental margin. Geochim Cosmochim Acta 69:5021–5032CrossRefGoogle Scholar
  336. Morford JL, Martin WR, Carney CM (2009) Uranium diagenesis in sediments underlying bottom waters with high oxygen content. Geochim Cosmochim Acta 73:2920–2937CrossRefGoogle Scholar
  337. Morgan B, Rate AW, Burton ED, Smirk MN (2012) Enrichment and fractionation of rare earth elements in FeS- and organic-rich estuarine sediments receiving acid sulfate soil drainage. Chem Geol 308–309:60–73CrossRefGoogle Scholar
  338. Moriwaki H, Yamamoto H (2013) Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol 97:1–8CrossRefGoogle Scholar
  339. Morris AW (1975) Dissolved molybdenum and vanadium in the northeast Atlantic Ocean. Deep Sea Res 22:49–54Google Scholar
  340. Morse JW, Bender ML (1990) Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82:265–277CrossRefGoogle Scholar
  341. Morse JW, Luther GW (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378CrossRefGoogle Scholar
  342. Morse JW, MacKenzie FT (1990) Geochemistry of sedimentary carbonates. Dev Sedimentol 48:707Google Scholar
  343. Morse JW, Arvidson RA, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 197:342–381CrossRefGoogle Scholar
  344. Mucci A, Richard L-F, Lucotte M, Guignard C (2000) The differential geochemical behavior of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord estuary. Can Aquat Geochem 6:293–324CrossRefGoogle Scholar
  345. Munsel D, Kramar U, Dissard D, Nehkre G, Berner Z, Bijma J, Reichart GJ, Neumann T (2010) Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments ith Ammonia tepida. Biogeosciences 7:2339–2350CrossRefGoogle Scholar
  346. Murnane RJ, Leslie B, Hammond DE, Stallard RF (1989) Germanium geochemistry in the Southern California Borderlands. Geochim Cosmochim Acta 53:2873–2882CrossRefGoogle Scholar
  347. Nakayama E, Tokoro H, Kuwamoto T, Fujinaga T (1981) Dissolved state of chromium in seawater. Nature 290:768–770CrossRefGoogle Scholar
  348. Nalewajko G, Lee K, Jack TR (1995) Effects of vanadium on freshwater phytoplankton photosynthesis. Water Air Soil Poll 81:93–105CrossRefGoogle Scholar
  349. Nameroff TJ, Balistrieri LS, Murray JW (2002) Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim Cosmochim Acta 66:1139–1158CrossRefGoogle Scholar
  350. Nance WB, Taylor SR (1976) Rare earth elements patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551CrossRefGoogle Scholar
  351. Neubert N, Nägler TF, Böttcher ME (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–778CrossRefGoogle Scholar
  352. Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148:329–340CrossRefGoogle Scholar
  353. Ohta A, Kawabe I (2001) REE (III) adsorption onto Mn dioxide (MnO2) and Fe oxyhydroxide: Ce(III) oxidation by MnO2. Geochim Cosmochim Acta 65:695–703CrossRefGoogle Scholar
  354. Oremland RS, Hollibaugh JT, Maes AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343Google Scholar
  355. Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) A microbial arsenic cycle in a salt-saturated extreme environment. Science 308:1305–1308CrossRefGoogle Scholar
  356. Osborne AH, Haley BH, Hathorne EC, Plancherel Y, Frank M (2015) Rare earth element distribution in Caribbean seawater: continental inputs versus lateral transport of distinct REE compositions in subsurface water masses. Mar Chem 177:172–183CrossRefGoogle Scholar
  357. Ozaki T, Suzuki Y, Nankawa T, Yoshida T, Ohnuki T, Kimura T, Francis AJ (2006) Interactions of rare earth elements with bacteria and organic ligands. J Alloy Compd 408–412:1334–1338CrossRefGoogle Scholar
  358. Pagnanelli F, Viggi CC, Toro L (2010) Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: biosorption versus bioprecipitation. Biores Technol 101:2981–2987CrossRefGoogle Scholar
  359. Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73:285–293CrossRefGoogle Scholar
  360. Papadopoulos P, Rowell DL (1988) The reactions of cadmium with calcium carbonate surfaces. J Soil Sci 39:23–36CrossRefGoogle Scholar
  361. Papadopoulos P, Rowell DL (1989) The reactions of copper and zinc with calcium carbonate surfaces. J Soil Sci 40:39–48CrossRefGoogle Scholar
  362. Paquette J, Reeder RJ (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta 59:735–749CrossRefGoogle Scholar
  363. Parekh PP, Möller P, Dulski P (1977) Distribution of trace elements between carbonate and non-carbonate phases of limestone. Earth Planet Sci Lett 34:39–50CrossRefGoogle Scholar
  364. Parmar N, Gorby YA, Beveridge TJ, Ferris FG (2001) Formation of green rust and immobilization of nickel in response to bacterial reduction of hydrous ferric oxide. Geomicrobiol J 184:375–385CrossRefGoogle Scholar
  365. Parsiegla KI, Katz JL (2000) Calcite growth inhibition by copper(II) II. Effect of solution composition. J Cryst Growth 213:368–380CrossRefGoogle Scholar
  366. Pattan JN, Pearce NJG, Mislankar PG (2005) Constraints in using cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean Basin. Chem Geol 221:260–278CrossRefGoogle Scholar
  367. Peacock CL, Sherman DM (2007) Crystal-chemistry of Ni in ferromanganese crusts and nodules. Am Miner 92:1087–1092CrossRefGoogle Scholar
  368. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  369. Peterson ML, Carpenter R (1986) Arsenic distributions in porewaters and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, B.C. Geochim Cosmochim Acta 50:353–369CrossRefGoogle Scholar
  370. Pettine M, D’Ottone L, Campanella L, Millero FJ, Passino R (1998a) The reduction of chromium (CI) by iron (III) in aqueous solutions. Geochim Cosmochim Acta 62:1509–1519CrossRefGoogle Scholar
  371. Pettine M, Barra I, Campanella L, Millero FJ (1998b) Effects of metals on the reduction of chromium (VI) with hydrogen sulfide. Water Res 32:2807–2813CrossRefGoogle Scholar
  372. Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253CrossRefGoogle Scholar
  373. Pingitore NE (1978) The behavior of Zn2+ and Mn2+ during carbonate diagenesis: theory and applications. J Sedim Res 48:799–814Google Scholar
  374. Piper DZ (1974) Rare earth elements in the sedimentary cycle. Chem Geol 14:285–304CrossRefGoogle Scholar
  375. Piper DZ, Bau M (2013) Normalized rare earth elements in water, sediments, and wine: Identifying sources and environmental redox conditions. Am J Anal Chem 4:69–83CrossRefGoogle Scholar
  376. Piper DZ, Dean WE (2002) Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions—a history of the local hydrography and global climate, 20 ka to the present. USGS Prof. Pap. no. 1670.
  377. Piper DZ, Perkins RB (2004) A modern vs. Permian black shales—the hydrography, primary productivity, and water-column chemistry of deposition. Chem Geol 206:177–197CrossRefGoogle Scholar
  378. Piriou B, Fedoroff M, Jeanjean J, Bercis L (1997) Characterization of the sorption of europium(III) on calcite by site-selective and time-resolved luminescence spectroscopy. J Coll Interf Sci 194:440–447CrossRefGoogle Scholar
  379. Pokrovsky OS, Galy A, Schott J, Pokrovski GS, Mantoura S (2014) Germanium isotope fractionation during Ge adsorption on goethite an its coprecipitation with Fe oxy(hydr)oxides. Geochim Cosmochim Acta 131:138–149CrossRefGoogle Scholar
  380. Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, Op den Camp HJ (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264CrossRefGoogle Scholar
  381. Polly R, Heberling F, Schimmelpfennig B, Geckeis H (2017) Quantum chemical investigations of the selenite incoporation into calcite (1014) surface. J Phys Chem C 121:20217–20228CrossRefGoogle Scholar
  382. Pourret O, Davranche M, Gruau G, Dia A (2007) Rare earth elements complexation with humic acid. Chem Geol 243:128–141CrossRefGoogle Scholar
  383. Pourret O, Davranche M, Gruau G, Dia A (2008) New insights into cerium anomalies in organic-rich alkaline waters. Chem Geol 251:120–127CrossRefGoogle Scholar
  384. Prange A, Kremling K (1985) Distribution of dissolved molybdenum, uranium and vanadium in Baltic Sea waters. Mar Chem 16:259–274CrossRefGoogle Scholar
  385. Premovic PI, Pavlovic MS, Pavlovic NZ (1986) Vanadium in ancient sedimentary rocks of marine origin. Geochim Cosmochim Acta 50:1923–1931CrossRefGoogle Scholar
  386. Presley BJ, Kolodny Y, Nissenbaum A, Kaplan IR (1972) Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia—II. Trace element distribution in interstitial water and sediment. Geochim Cosmochim Acta 36:1073–1090CrossRefGoogle Scholar
  387. Prieto M, Cubillas P, Fernández-Gonzales A (2003) Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim Cosmochim Acta 67:3859–3869CrossRefGoogle Scholar
  388. Qu C, Liu G, Zhao Y (2009) Experimental study on the fractionation of yttrium from holmium during the coprecipitation with calcium carbonates in seawater solutions. Geochem J 43:403–414CrossRefGoogle Scholar
  389. Quinn KA, Byrne RH, Schijf J (2006) Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate. Geochim Cosmochim Acta 70:4151–4165CrossRefGoogle Scholar
  390. Ravizza G, Turekian KK, Hay BJ (1991) The geochemistry of rhenium and osmium in recent sediments from the Black Sea. Geochim Cosmochim Acta 55:3741–3752CrossRefGoogle Scholar
  391. Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896CrossRefGoogle Scholar
  392. Reeder RJ (1996) Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim Cosmochim Acta 60:1543–1552CrossRefGoogle Scholar
  393. Reeder RJ, Lamble GM, Northrup PA (1999) XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. Am Miner 84:1049–1060CrossRefGoogle Scholar
  394. Reeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ Sci Technol 34:638–644CrossRefGoogle Scholar
  395. Reeder RJ, Nugent M, Tait CD, Morris DE, Heald SM, Beck KM, Hess WP, Lanzirotti A (2001) Coprecipitation of uranium (VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim Cosmochim Acta 65:3491–3503CrossRefGoogle Scholar
  396. Reeder RJ, Elzinga EJ, Tait D, Rector KD, Donohoe RJ, Morris DE (2004) Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim Cosmochim Acta 68:4799–4808CrossRefGoogle Scholar
  397. Renard F, Montes-Hernandez G, Ruiz-Agudo E, Putnis C (2013) Selenium incorporation into calcite and ist effect on crystal growth: an atomic force microscopy study. Chem Geol 340:151–161CrossRefGoogle Scholar
  398. Renard F, Putnis CV, Montes-Hernandez G, Ruiz-Agudo E, Hovelmann J, Sarret G (2015) Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging. Geochim Cosmochim Acta 159:61–79CrossRefGoogle Scholar
  399. Renard F, Putnis CV, Montes-Hernandez G, King HE, Breedveld GD, Okkenhaug G (2018) Sequestration of antimony on calcite observed by time-resolved nanoscale imaging. Environ Sci Technol 52:107–113CrossRefGoogle Scholar
  400. Riley JP, Taylor D (1968) Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry. Anal Chim Acta 40:479–485CrossRefGoogle Scholar
  401. Rimstidt JD, Balog A, Webb J (1998) Distribution of trace elements between carbonate minerals and aqueous solutions. Geochim Cosmochim Acta 62:1851–1863CrossRefGoogle Scholar
  402. Robbins LJ, Lalonde SV, Planavsky NJ, Partin CA, Reinhard CT, Kendall B, Scott C, Hardisty DS, Gill BC, Alessi DS, Dupont CL, Saito MA, Poulton SW, Bekker A, Lyons TW, Konhauser KO (2016) Trace elements at the intersection of marine biological and geochemical evolution. Earth Sci Rev 163:323–348CrossRefGoogle Scholar
  403. Roberts JA, Bennett PC, Gonzalez LA, Macpherson GL, Miliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280CrossRefGoogle Scholar
  404. Rodler A, Sánchez-Pastor N, Fernández-Díaz L, Frei R (2015) Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: implications for their use as paleoclimatic proxy. Geochim Cosmochim Acta 164:221–235CrossRefGoogle Scholar
  405. Román-Ross G, Cuello GJ, Turrillas X, Fernández-Martinez A, Charlet L (2006) Arsenite sorption and co-precipitation with calcite. Chem Geol 233:328–336CrossRefGoogle Scholar
  406. Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Authigenic cadmium enrichments in suboxic sediments: precipitation and postdepositional mobility. Earth Planet Sci Lett 132:99–111CrossRefGoogle Scholar
  407. Rousseau TCC, Sonke JE, Chmeleff J, Candaudap F, Lacan F, Boaventura G, Seyler P, Jeandel C (2013) Rare earth element analysis in natural waters by multiple isotope dilution—sector field ICP-MS. J Anal At Spectrom 28:573–584CrossRefGoogle Scholar
  408. Rovira M, Giménez J, Martínez M, Martínez-Lladó X, de Pablo J, Martí V, Duro L (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: GOETHITE and hematite. J Hazard Mater 150:279–284CrossRefGoogle Scholar
  409. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, New York, pp 1–64Google Scholar
  410. Rudnicki MD, Elderfield H (1993) A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26N, Mid-Atlantic Ridge. Geochim Cosmochim Acta 57:2939–2958CrossRefGoogle Scholar
  411. Russell AD, Morford JL (2001) The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia. Mar Geol 174:341–354CrossRefGoogle Scholar
  412. Russell AD, Emerson S, Nelson BK, Erez J, Lea DW (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim Cosmochim Acta 58:671–681CrossRefGoogle Scholar
  413. Sabau A, Pipon Y, Toulhoat N, Lomenech C, Jordan N, Moncoffre N, Barkleit A, Marmier N, Brendler V, Surblé S, Giffuat E (2014) Interaction of europium and nickel with calcite studied by Rutherford backscatter spectrometry and time-resolved laser fluorescence spectroscopy. Nucl Instr Method Phys Res B 332:111–116CrossRefGoogle Scholar
  414. Saito MA, Moffett JW (2002) Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochim Coscmochim Acta 66:1943–1953CrossRefGoogle Scholar
  415. Saito MA, Moffett JW, DiTullio GR (2004) Cobalt and nickel in the Peru upwelling region: a major flux of labile cobalt utilized as a micronutrient. Glob Biogeochem Cycl. CrossRefGoogle Scholar
  416. Sánchez-Pastor N, Gigler AM, Cruz JA, Park SH, Jordan G, Fernández-Díaz L (2011) Growth of calcium carbonate in the presence of Cr(VI). Cryst Growth Des 11:3081–3089CrossRefGoogle Scholar
  417. Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22CrossRefGoogle Scholar
  418. Sawada K, Abdel-Aal K, Tan K, Satoh K (2005) Adsorption of lanthanoid ions on calcite. Dalton Trans 20:3291–3296CrossRefGoogle Scholar
  419. Sawlan JJ, Murray JW (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet Sci Lett 64:213–230CrossRefGoogle Scholar
  420. Scheller S, Goenrich M, Boecher R, Thauer RT, Jaun B (2012) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608CrossRefGoogle Scholar
  421. Scherer M, Seitz H (1980) Rare-earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis. Chem Geol 28:279–289CrossRefGoogle Scholar
  422. Schijf J, Byrne RH (2004) Determination of SO4β1 for yttrium and the rare earth elements at I = 0.66 m and t = 25°C—implications for YREE solution speciation in sulfate-rich waters. Geochim Cosmochim Acta 68:2825–2837. CrossRefGoogle Scholar
  423. Schijf J, De Baar HJW, Millero FJ (1995) Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea. Geochim Cosmochim Actahim Acta 59:3285–3299CrossRefGoogle Scholar
  424. Schijf J, Christenson EA, Byrne RH (2015) YREE scavenging in seawater: a new look on an old model. Mar Chem 177:460–471CrossRefGoogle Scholar
  425. Schlautman MA, Han I (2001) Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Res 35:1534–1546CrossRefGoogle Scholar
  426. Schmitt RA, Smith RH, Lasch JE, Mosen AW, Olehy DA, Vasilevskis J (1963) Abundances of the fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrestrial matter. Geochim Cosmochim Acta 27:577–622CrossRefGoogle Scholar
  427. Schosseler PM, Wehrli B, Schweiger A (1999) Uptake of Cu2+ by the calcium carbonates vaterite and calcite as studied by continuous wave (CW) and pulse electron paramagnetic resonance. Geochim Cosmochim Acta 63:1955–1967CrossRefGoogle Scholar
  428. Scott C, Lyons TW (2012) Constraining molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem Geol 324–325:19–27CrossRefGoogle Scholar
  429. Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194CrossRefGoogle Scholar
  430. Selby D, Creaser RA (2003) Re–Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chem Geol 200:225–240CrossRefGoogle Scholar
  431. Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246CrossRefGoogle Scholar
  432. Shen GT, Boyle EA (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol 67:47–62CrossRefGoogle Scholar
  433. Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59:2009–2024CrossRefGoogle Scholar
  434. Shiller AM, Chan EW, Joung DJ, Redmond MC, Kessler JD (2017) Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Sci Rep. CrossRefGoogle Scholar
  435. Sholkovitz E (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34CrossRefGoogle Scholar
  436. Sholkovitz ER, Elderfield H (1988) The cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem Cycl 2:157–176CrossRefGoogle Scholar
  437. Sholkovitz E, Shen GT (1995) The incorporation of rare earth elements in modern coral. Geochim Cosmochim Acta 59:2749–2756CrossRefGoogle Scholar
  438. Sholkovitz ER, Piepgras DJ, Jacobsen ST (1989) The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochim Cosmochim Acta 53:2847–2856CrossRefGoogle Scholar
  439. Sholkovitz ER, Shaw TJ, Schneider DL (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim Cosmochim Acta 56:3389–3402CrossRefGoogle Scholar
  440. Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58:1567–1579CrossRefGoogle Scholar
  441. Skrabal SA, Donat JR, Burdige DJ (2000) Pore water distributions of dissolved copper nd copper-complexing ligands in estuarine and coastal marine sediments. Geochim Cosmochim Acta 64:1843–1857CrossRefGoogle Scholar
  442. Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79CrossRefGoogle Scholar
  443. Smedly PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  444. Sø HU, Postma D, Jakobsen R, Larsen F (2009) Sorption and desorption of arsenate and arsenite on calcite. Geochim Cosmochim Acta 72:5871–5884CrossRefGoogle Scholar
  445. Sonke JE, Salters VJM (2006) Lanthanide-humic substances complexation. I. experimental evidence for a lanthanide contraction effect. Geochim Cosmochim Acta 70:1495–1506CrossRefGoogle Scholar
  446. Spear JR, Figueroa LA, Honeyman BD (2000) Modeling reduction of uranium(VI) under variable sulfate concentrations by sulfate-reducing bacteria. Appl Environ Microbiol 66:3711–3721CrossRefGoogle Scholar
  447. Spencer DW, Brewer PG, Sachs PL (1972) Aspects of the distribution and trace element composition of suspended matter in the Black Sea. Geochim Cosmochim Acta 36:71–86CrossRefGoogle Scholar
  448. Stauder S, Raue B, Sacher F (2005) Thioarsenates in sulfidic waters. Environ Sci Technol 39:5933–5939CrossRefGoogle Scholar
  449. Staudt WJ, Reeder RJ, Schoonen MAA (1994) Surface structural controls on compoisitional zoning of SO24 and SeO42- in synthetic calcite crystals. Geochim Cosmochim Ac 58:2087–2098CrossRefGoogle Scholar
  450. Steinberg NA, Blum JS, Hochstein L, Oremland RS (1992) Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl Environ Microbiol 58:426–428Google Scholar
  451. Stipp SL, Hochella MFJ (1991) Structure and bonding environments at the calcite surface observed with X-ray photoelectron spectroscopy (XPS) and low energy diffraction (LEED). Geochim Cosmochim Acta 55:1723–1736CrossRefGoogle Scholar
  452. Stipp SL, Hochella MFJ, Parks GA, Leckie JO (1992) Cd2+ uptake by calcite: solid-state dussution and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim Cosmochim Acta 56:1941–1954CrossRefGoogle Scholar
  453. Stipp SLS, Lakshtanov LZ, Jensen JT, Baker JA (2003) Eu3+ uptake by calcite: Preliminary results from coprecipitation experiments and observations with surface-sensitive techniques. J Contam Hydrol 61:33–43CrossRefGoogle Scholar
  454. Stipp SLS, Christensen JT, Lakshtanov LZ, Baker JA, Waight TE (2006) Rare earth element (REE) incorporation in natural calcite: upper limits for actinide uptake in a secondary phase. Radiochim Acta 94:523–528CrossRefGoogle Scholar
  455. Stockdale A, Davison W, Zhang H, Hamilton-Taylor J (2010) The association of cobalt with iron and manganese (oxyhydr)oxides in marine sediments. Aquat Geochem 16:575–585CrossRefGoogle Scholar
  456. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefGoogle Scholar
  457. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130CrossRefGoogle Scholar
  458. Stout DL, Carroll SA (1993) A literature review of actinide-carbonate mineral interactions (No. SAND--92-7328). Sandia National Labs, AlbuquerqueCrossRefGoogle Scholar
  459. Sturchio NC, Antonio MR, Soderholm L, Sutton SR, Brannon JC (1998) Tetravalent uranium in calcite. Science 281:971–973CrossRefGoogle Scholar
  460. Sugimura Y, Suzuki Y, Miyake Y (1976) The content of selenium and its chemical form in sea water. J Oceanogr 32:235–241CrossRefGoogle Scholar
  461. Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Acta 60:1465–1477CrossRefGoogle Scholar
  462. Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6:411–442Google Scholar
  463. Sundby B, Martinez P, Gobeil C (2004) Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochim Cosmochim Acta 68:2485–2493CrossRefGoogle Scholar
  464. Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67:70–78CrossRefGoogle Scholar
  465. Swanson VE, Swanson VE (1961) Geology and geochemistry of uranium in marine black shales: a review. US Government Printing Office, Washington, DCCrossRefGoogle Scholar
  466. Swart PK, Hubbard JAEB (1982) Uranium in scleractinian corals. Coral Reefs 1(1):13–19CrossRefGoogle Scholar
  467. Swarzenski PW, McKee BA, Skei JM, Todd JF (1999) Uranium biogeochemistry across the redox transition zone of a premanently stratified fjord: Framvaren, Norway. Mar Chem 67:181–198CrossRefGoogle Scholar
  468. Takahashi Y, Chatellier X, Hattori KH, Kato K, Fortin D (2005) Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol 219:53–67CrossRefGoogle Scholar
  469. Takahashi Y, Yamamoto M, Yamamoto Y, Tanaka K (2010) EXAFS study on the cause of enrichment of heavy REEs on bacterial cell surfaces. Geochim Cosmochim Acta 74:5443–5462CrossRefGoogle Scholar
  470. Tanaka K, Kawabe I (2006) REE abundances in ancient seawater inferred from marine limestones and experimental REE partition coefficients between calcite and aqueous solution. Geochem J 40:425–435CrossRefGoogle Scholar
  471. Tanaka K, Ohta A, Kawabe I (2004) Experimental REE partitioning between calcite and aqueous solution at 25 °C and 1 atm: constraints on the incorporation of seawater REE into seamount-type limestones. Geochem J 38:19–32CrossRefGoogle Scholar
  472. Tanaka K, Takahashi Y, Shimizi H (2008) Local structure of Y and Ho in calcite and its relevance to Y fractionation from Ho in partitioning between calcite and aqueous solution. Chem Geol 248:104–113CrossRefGoogle Scholar
  473. Tang J, Johannesson KH (2003) Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach. Geochim Cosmochim Acta 67:2321–2339CrossRefGoogle Scholar
  474. Tang J, Johannesson KH (2010) Ligand extraction of rare earth elements from aquifer sediments: Implications for rare earth element complexation with organic matter in natural waters. Geochim Cosmochim Acta 74:6690–6705CrossRefGoogle Scholar
  475. Tang Y, Elzinga EJ, Lee YJ, Reeder RJ (2007) Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim Cosmochim Acta 71:1480–1493CrossRefGoogle Scholar
  476. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, MaldenGoogle Scholar
  477. Tella M, Pokrovski GS (2009) Antimony(III) complexing with O-bearing organic ligands in aqueous solutions: An X-ray absorption fine structure spectroscopy and solubility study. Geochim Cosmochim Acta 73:268–290CrossRefGoogle Scholar
  478. Temmam M, Paquette J, Vali H (2000) Mn and Zn incorporation into calcite as a function of chloride aqueous concentration. Geochim Cosmochim Acta 64:2417–2430CrossRefGoogle Scholar
  479. Terakado Y, Masuda A (1988) The coprecipitation of rare-earth elements with calcite and aragonite. Chem Geol 69:103–110CrossRefGoogle Scholar
  480. Tesoriero AJ, Pankow JF (1996) Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim Cosmochim Acta 60:1053–1063CrossRefGoogle Scholar
  481. Thomson J, Higgs NC, Croudace IW, Colley S, Hydes DJ (1993) Redox zonation ef elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim Cosmochim Acta 57:579–595CrossRefGoogle Scholar
  482. Thomson J, Higgs NC, Wilson TRS, Croudace W, De Lange GJ, Van Santvoort PJM (1995) Redistribution and geochemical behavior of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochim Cosmochim Acta 59:3487–3501CrossRefGoogle Scholar
  483. Thomson J, Jarvis I, Green RH, Green DA, Clayton T (1998) Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial. Geochim Cosmochim Acta 62:643–656CrossRefGoogle Scholar
  484. Thornber MR, Nickel EH (1976) Supergene alteration of sulphides. III. The composition of associated carbonates. Chem Geol 17:45–72CrossRefGoogle Scholar
  485. Tourtelot HA (1956) Radioactivity and uranium content of some Cretaceous shales, Central Great Plains. Am Assoc Petrol Geol Bull 40:62–83Google Scholar
  486. Toyama K, Terakado Y (2014) Experimental study of rare earth element partitioning between calcite and sodium chloride solution at room temperature and pressure. Geochem J 48:463–477CrossRefGoogle Scholar
  487. Trefry JH, Metz S (1989) Role of hydrothermal precipitates in the geochemical cycling of vanadium. Nature 342:531–533CrossRefGoogle Scholar
  488. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32CrossRefGoogle Scholar
  489. Tribovillard N, Bout-Roumazeilles V, Riboulleau A, Baudin F, Danelian T, Riquier L (2011) Transfer of germanium to marine sediments: Insights from its accumulation in radiolarites and authigenic capture under reducing conditions. Some examples through geological ages. Chem Geol 282:120–130CrossRefGoogle Scholar
  490. Tribovillard N, Algeo TJ, Baudin F, Riboulleau A (2012) Analysis of marine environmental conditions based on molybdenum-uranium covariation—applications to Mesozoic paleoceanography. Chem Geol 324–325:46–58CrossRefGoogle Scholar
  491. Tsusue A, Holland HD (1966) The coprecipitation of cations with CaCO3 – III. The coprecipitation of Zn2+ with calcite between 50 and 250 °C. Geochim Cosmochim Acta 30:439–453CrossRefGoogle Scholar
  492. Tucker MD, Barton LL, Thomson BM (1997) Reduction and immobilization of molybdate by Desulfovibrio desulfuricans. J Environ Qual 26:1146–1152CrossRefGoogle Scholar
  493. Tucker MD, Barton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19CrossRefGoogle Scholar
  494. Turekian KK, Imbrie J (1966) The distribution of trace elements in deep-sea sediments of the Atlantic Ocean. Earth Planet Sci Lett 1:161–168CrossRefGoogle Scholar
  495. Ulrich K-U, Veeramani H, Latmani-Bernier R, Giammar DE (2011) Speciation-dependent kinetics of uranium(VI) bioreduction. Geomicrobiol J 28:396–409CrossRefGoogle Scholar
  496. Vahrenkamp VC, Swart PK (1990) New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology 18:387–391CrossRefGoogle Scholar
  497. Vallee BL, Auld DS (1993) Zinc: biological functions and coordination motifs. Acc Chem Res 26:543–551CrossRefGoogle Scholar
  498. Van der Weijden RD, Meina J, Comans RNJ (1997) Sorption and sorption reversibility of cadmium on calcite in the presence of phosphate and sulfate. Mar Chem 57:119–132CrossRefGoogle Scholar
  499. Van Dyke MI, Lee H, Trevors JT (1989) Germanium accumulation by bacteria. Arch Microbiol 152:533–538CrossRefGoogle Scholar
  500. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tiens AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222CrossRefGoogle Scholar
  501. Vega M, Van den Berg CMG (1997) Determination of cobalt in seawater by catalytic adsorptive cathodic stripping voltammetry. Anal Chem 60:874–881CrossRefGoogle Scholar
  502. Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. Stable Isotope Sedim Geol 10:3–100 (SEPM short course) Google Scholar
  503. Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135CrossRefGoogle Scholar
  504. Vine JD, Tourtelot EB (1970) Geochemistry of black shale deposits; a summary report. Econ Geol 65:253–272CrossRefGoogle Scholar
  505. Vink BW (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem Geol 130:21–30CrossRefGoogle Scholar
  506. Visscher PT, Prins RA, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Lett 86:283–288CrossRefGoogle Scholar
  507. Voigt M, Mavromatis V, Oelkers EH (2017) The experimental determination of REE partition coefficients in the water–calcite system. Chem Geol 462:30–43CrossRefGoogle Scholar
  508. Vorlicek TP, Kahn MD, Kasuya Y, Helz GR (2004) Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides. Geochim Cosmochim Acta 68:547–556CrossRefGoogle Scholar
  509. Wagner M, Hendy IL, McKay JL, Pedersen TF (2013) Influence of biological productivity on silver and redox-sensitive metal accumulation in Southern Ocean surface sediments, Pacific sector. Earth Planet Sci Lett 380:31–40CrossRefGoogle Scholar
  510. Wang X, He M, Lin C, Gao Y, Zheng L (2012) Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chem d Erde 72:41–47CrossRefGoogle Scholar
  511. Wang XL, Planavsky NJ, Hull PM, Tripati AE, Zou HJ, Elder L, Henehan M (2016) Chromium isotopic composition of core-top planktonic foraminifera. Geobiology 15:51–64CrossRefGoogle Scholar
  512. Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56:1471–1483CrossRefGoogle Scholar
  513. Wardani El (1958) Marine geochemistry of germanium and the origin of Pacific pelagic clay minerals. Geochim Cosmochim Acta 15:237–254CrossRefGoogle Scholar
  514. Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013–5020CrossRefGoogle Scholar
  515. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565CrossRefGoogle Scholar
  516. Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. Phys Chem Earth 8:305–333CrossRefGoogle Scholar
  517. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232CrossRefGoogle Scholar
  518. Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim Cosmochim Acta 53:69–77CrossRefGoogle Scholar
  519. Wenger LM, Baker DR (1986) Variations in organic geochemistry of anoxic-oxic black shale-carbonate sequences in the Pennsylvanian of the Midcontinent, USA. Org Geochem 10:85–92CrossRefGoogle Scholar
  520. Weremeichik JM, Gabitov RI, Thien BM, Sadekov A (2017) The effect of growth rate on uranium partitioning between individual calcite crystals and fluid. Chem Geol 450:145–153CrossRefGoogle Scholar
  521. Wharton MJ, Atkins B, Charnock JM, Livens FR, Pattrick RAD, Collison D (2000) An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Appl Geochem 15:347–354CrossRefGoogle Scholar
  522. White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415CrossRefGoogle Scholar
  523. Widerlund A (1996) Early diagenetic remobilization of copper in near-shore marine sediments: a quantitative pore-water model. Mar Chem 54:41–53CrossRefGoogle Scholar
  524. Widerlund A, Ingri J (1995) Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden. Chem Geol 125:185–196CrossRefGoogle Scholar
  525. Wildeman TR, Haskin L (1965) Rare-earth elements in ocean sediments. J Geophys Res 70:2905–2910CrossRefGoogle Scholar
  526. Wilkin RT, Wallschläger D, Ford RG (2003) Speciation of arsenic in sulfidic waters. Geochem Trans 4:1–7CrossRefGoogle Scholar
  527. Williams-Jones AE, Migdisov AA, Samson JM (2012) Hydrothermal mobilisation of the rare earth elements—a tale of “ceria” and “yttria”. Elements 8:355–360CrossRefGoogle Scholar
  528. Winkel LHE, Casentini B, Bardelli F, Voegelin A, Nikolaidis NP, Charlet L (2013) Speciation of arsenic in Greek travertines: Coprecipitation of arsenate with calcite. Geochim Cosmochim Acta 106:99–110CrossRefGoogle Scholar
  529. Withers SH, Peale RE, Schulte AF, Braunstein G, Beck KM, Hess WP, Reeder RJ (2003) Broad distribution of crystal-field environments for Nd3+ in calcite. Phys Chem Miner 30:440–448CrossRefGoogle Scholar
  530. Wood SA (1993) The aqueous geochemistry of the rare-earth elements: critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management. Eng Geol 34:229–259CrossRefGoogle Scholar
  531. Wu C-H, Lo S-L, Lin C-F, Kuo C-Y (2001) Modeling competitive adsorption of molybdate, sulfate, and selenate on γ-Al2O3 by the triple layer model. J Colloid Interf Sci 233:259–264CrossRefGoogle Scholar
  532. Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochim Cosmochim Acta 68:2067–2080CrossRefGoogle Scholar
  533. Xi J, He M, Wang K, Zhang G (2013) Adsorption of antimony(III) on goethite in the presence of competitive anoins. J Geochem Explor 132:201–208CrossRefGoogle Scholar
  534. Xiong Y (2003) Solubility and speciation of rhenium in anoxic environments at ambient temperatures and applications to the Black Sea. Deep Sea Res I 50:681–690CrossRefGoogle Scholar
  535. Xu Z, Han G (2009) Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China. Appl Geochem 24:1803–1816CrossRefGoogle Scholar
  536. Xu N, Hochella MFJ, Brown GE, Parks GA (1996) Co(II) sorption at the calcite-water interface: I. X-ray photoelectron spectroscopic study. Geochim Cosmochim Actahim Actahim Acta 60:2801–2815CrossRefGoogle Scholar
  537. Xu N, Christodoulatos C, Braida W (2006) Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: Effect of pH and competitive ions. Chemosphere 62:1726–1735CrossRefGoogle Scholar
  538. Yamashita Y, Takahashi Y, Haba H, Enomoto S, Shimizu H (2007) Comparison of reductive accumulation of Re and Os in seawater–sediment systems. Geochim Cosmochim Acta 71:3458–3475CrossRefGoogle Scholar
  539. Yang J, Torres M, McManus J, Algeo TJ, Hakala JA, Verba C (2017) Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: Role of post-depositional diagenesis of phosphorus phases. Chem Geol 466:533–544CrossRefGoogle Scholar
  540. Yokoyama Y, Mitsnobu S, Tanaka K, Itai T, Takahashi Y (2009) A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water. Chem Lett 38:910–911CrossRefGoogle Scholar
  541. Yokoyama Y, Tanaka K, Takahashi Y (2012) Differences in the immobilization of arsenite and arsenate by calcite. Geochim Cosmochim Acta 91:202–219CrossRefGoogle Scholar
  542. Yu Z, Chistoserdova L (2017) Communal metabolism of methane and the rare earth element switch. J Bacteriol 199:e00328-17CrossRefGoogle Scholar
  543. Zachara JM, Kittrick JA, Harsch JB (1988a) The mechanism of Zn2+ adsorption on calcite. Geochim Cosmochim Acta 52:2281–2291CrossRefGoogle Scholar
  544. Zachara JM, Kittrick JA, Harsh JB (1988b) The mechanism of Zn2+ adsorption on calcite. Geochim Cosmochim Acta 52:2281–2291CrossRefGoogle Scholar
  545. Zachara JM, Cowan CE, Resch CT (1991) Sorption of divalent metals on calcite. Geochim Cosmochim Acta 55:1549–1562CrossRefGoogle Scholar
  546. Zavarin M, Roberts SK, Hakem N, Sawvel AM, Kersting AB (2004) Eu(III), Sm(III), Np(V), Pu(V), and Pu(IV) sorption to calcite. Radiochim Acta 93:93–120Google Scholar
  547. Zehr JP, Oremland RS (1987) Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. Appl Environ Microbiol 53:1365–1369Google Scholar
  548. Zhang J, Nozaki Y (1998) Behavior of rare earth elements in seawter at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan. Geochim Cosmochim Acta 62:1307–1317CrossRefGoogle Scholar
  549. Zhang H, Van den Berg CMG, Wollast R (1990) The determination of interactions of cobalt (II) with organic compounds in seawater using cathodic stripping voltammetry. Mar Chem 28:285–300CrossRefGoogle Scholar
  550. Zhang J, Amakawa H, Nozaki Y (1994) The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett 21:2677–2680CrossRefGoogle Scholar
  551. Zhang J, Dong H, Zhao L, McCarrick R, Agrawal A (2014) Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem Geol 370:29–39CrossRefGoogle Scholar
  552. Zhang L, Algeo TJ, Cao L, Zhao L, Chen Z-Q, Li Z (2016) Diagenetic uptake of rare earth elements by conodont apatite. Paleogeogr Paleoclim Paleoecol 458:176–197CrossRefGoogle Scholar
  553. Zhao Y, Vance D, Abouchami W, de Baar HJW (2014) Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta 125:653–672CrossRefGoogle Scholar
  554. Zheng Y, Anderson RF, Van Geen A, Kuwabara J (2000) Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochim Cosmochim Acta 64:4165–4178CrossRefGoogle Scholar
  555. Zheng Y, Anderson RF, Van Geen A, Fleischer MQ (2002) Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim Cosmochim Acta 66:1759–1772CrossRefGoogle Scholar
  556. Zheng X-Y, Yang J, Henderson GM (2014) A robust procedure for high-precision determination of rare earth element concentrations in seawater. Geostand Geoanalytical Res 39:277–292CrossRefGoogle Scholar
  557. Zheng X-Y, Plancherel Y, Saito MA, Scott PM, Henderson GM (2016) Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behavior. Geochim Cosmochim Acta 177:217–237CrossRefGoogle Scholar
  558. Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 & #xB0;C and 1 atm, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453CrossRefGoogle Scholar
  559. Zhu C (2002) Estimation of surface precipitation constants for sorption of divalent metals onto hydrous ferric oxide and calcite. Chem Geol 188:23–32CrossRefGoogle Scholar
  560. Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753CrossRefGoogle Scholar
  561. Zwicker J, Smrzka D, Himmler T, Monien P, Gier S, Goedert JL, Peckmann J (2018) Rare earth elements as tracers for microbial activity and early diagenesis: anew perspective from carbonate cements of ancient methane-seep deposits. Chem Geol 501:77–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  2. 2.MARUM, Center for Marine and Environmental Sciences and Department of GeosciencesUniversity of BremenBremenGermany
  3. 3.Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine SciencesShanghai Ocean UniversityShanghaiChina
  4. 4.Geological Survey of NorwayTrondheimNorway
  5. 5.Center for Earth System Science and Sustainability, Institute for GeologyUniversität HamburgHamburgGermany

Personalised recommendations